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Abstract
Background  Most researches on sponge holobionts focus primarily on symbiotic microbes, yet data at the 
level of the sponge hologenome are still relatively scarce. Understanding of the sponge host and its microbial 
gene expression profiles and the host-microbes interplay in different niches represents a key aspect of sponge 
hologenome. Using the Hawaiian demosponge Mycale grandis in different niches as a model, i.e. on rocks, on the 
surface of coral Porites compressa, under alga Gracilaria salicornia, we compared the bacterial and fungal community 
structure, functional gene diversity, expression pattern and the host transcriptome by integrating open-format (deep 
sequencing) and closed-format (GeoChip microarray) high-throughput techniques.

Results  Little inter-niche variation in bacterial and fungal phylogenetic diversity was detected for M. grandis in 
different niches, but a clear niche-dependent variability in the functional gene diversity and expression pattern of 
M. grandis host and its symbiotic microbiota was uncovered by GeoChip microarray and transcriptome analyses. 
Particularly, sponge host genes related to innate immunity and microbial recognition showed a strong correlation 
with the microbial symbionts’ functional gene diversity and transcriptional richness in different niches. The cross-
niche variability with respect to the symbiont functional gene diversity and the transcriptional richness of M. grandis 
holobiont putatively reflects the interplay of niche-specific selective pressure and the symbiont functional diversity.

Conclusions  Niche–dependent gene expression profiles of M. grandis hologenome and the host-microbes interplay 
were suggested though little inter-niche variation in bacterial and fungal diversity was detected, particularly the 
sponge innate immunity was found to be closely related to the symbiotic microbes. Altogether, these findings 
provide novel insights into the black box of one sponge holobiont in different niches at the hologenome level.
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Background
Sponges (Phylum Porifera) are benthic, sessile metazoans 
across the world’s oceans and freshwater environments, 
encompassing more than 8,500 formally described spe-
cies [1, 2]. Genomic evidence places sponges at the base 
of the metazoan phylogenetic tree, supported by fossil 
records dating back 580  million years [1]. One sponge 
host and its symbiotic microbiota form a sponge holobi-
ont [2, 3]. Their collective genomes, including both the 
sponge and its microbiome, are known as ‘sponge hologe-
nome’ [4]. Recent research by Vargas et al. provided the 
holistic evidence for the sponge body-plan reorganiza-
tion in response to microbiome perturbations, underlin-
ing the interaction between the sponge and its microbiota 
[5]. This intricate relationship between sponge hosts and 
their symbiotic microbes renders sponge holobionts as 
exceptional models for studying animal-microbe sym-
bioses [6]. Beyond their scientific interest, sponge holo-
bionts serve various functions in marine ecosystems and 
biotechnology e.g. geochemical cycling [4], production of 
novel marine enzymes and natural products with poten-
tial applications [7, 8].

The global sponge microbiome project underscores 
the vital role of sponge holobionts as reservoirs of excep-
tional microbial diversity, contributing significantly to 
the world’s oceanic microbial diversity [3]. This project 
also indicates that sponge host phylogeny predominantly 
influences the complexity of its symbiont community 
though. geographic or environmental factors show 
impacts on sponge microbial community composition 
[9–11]. Core sponge microbiomes, characterized by 
generalist symbionts exhibiting amensalistic or com-
mensalistic interactions, demonstrate notable stability 
against environmental or geological factors [3]. Func-
tional equivalence and evolutionary convergence among 
complex sponge microbial symbionts have also been pro-
posed [12], underlining their essential roles in the sponge 
holobionts. The functions of sponge holobionts pivot 
on the stability of host-symbiont interactions and their 
response to environmental changes. Although Erwin et 
al. [13] have highlighted the temporal stability of com-
plex host-microbe symbioses in a temperate, seasonal 
environment, the present researches primarily focuse on 
symbiotic microbes within sponge holobionts, with lim-
ited exploration of the sponge host changes, especially 
at the hologenome level [2, 3, 11–13]. This indicates a 
significant knowledge gap in understanding sponge host 
gene expression and the host-microbe interplay across 
diverse ecological niches.

The marine sponge Mycale grandis (formerly Mycale 
armata) is widely distributed in highly diversified envi-
ronments (here described as different niches) around 
Hawaii as an encrusting sponge, such as on rocks, on the 
surface of reef-building corals such as Porites compressa 

[14], or under the mats of macroalga Gracilaria salicor-
nia. Our previous investigations (including the sampling 
sites selected in this study) illustrated that M. grandis had 
relatively consistent bacterial and fungal communities 
[15, 16]. Therefore M. grandis is an ideal model for inves-
tigating the sponge holobiont’s relationship with niches. 
It can be hypothesized that the sponge hologenome’s 
expression and host-microbes interplay of a sponge holo-
biont are niche-dependent, even though the symbiotic 
microbial community remain relative stable across differ-
ent niches. In order to provide evidence for this hypoth-
esis, the microbial community structure, functional gene 
diversity, expression pattern and the host transcriptome 
of M. grandis in different niches were compared in this 
study using an integrated approach including open 
(pyrosequencing, (meta) transcriptomics) and closed 
(GeoChip microarray) platforms of high throughput 
technologies. This study unravels the intricate inter-
play between a sponge holobiont and its environmental 
niches by integrating data on the host’s gene expression 
with the profiles of its associated bacterial and fungal 
communities.

Materials and methods
Sponge sampling and nucleotide acid preparation
Sponge Mycale grandis samples in three different niches, 
i.e. on rocks, on the surface of coral Porites compressa 
and under alga Gracilaria salicornia, were collected 
around Coconut Island, Kaneohe Bay, Oahu, Hawaii, in 
May 2013 (Fig. 1). Sponge specimens were collected from 
3 different individuals from each niche, respectively, at a 
depth of 0.5–1.5 m and put in sterile zip bags underwa-
ter. Once on board, the sponge specimens were imme-
diately rinsed with autoclaved artificial seawater. After 
cutting into pieces thinner than 5 mm by clean scalpels, 
the sponge samples were put into RNAlater (Qiagen, 
Germany), and then stored at -80  °C. Coral branches 
(P. compressa) and algal tissues (G. salicornia) were col-
lected in triplicate along with the sponge sampling and 
kept in RNAlater using the same procedure as sponge 
samples. The sampling permission of sponges, corals and 
algae was issued by Hawaii Division of Aquatic Resources 
with the tracking number SAP-2012-71. Ambient seawa-
ter (∼  5 L) was collected simultaneously and filtered by 
10 μm and 0.22 μm filters (Millipore, USA) subsequently. 
The filters were then preserved in falcon tubes with 15mL 
RNAlater, and then kept at -80 °C.

For rRNA-based sequencing and GeoChip analyses, the 
nucleic acid samples were prepared as follows: all biologi-
cal tissues were homogenized by a FastPrep 24 machine 
(MP Biomedicals, USA) following manufacturer’s 
instructions to facilitate the lysis process. Total DNA and 
RNA were extracted using AllPrep DNA/RNA Mini Kit 
(Qiagen, Germany). The absence of DNA contamination 
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in RNA samples was confirmed by performing 16  S 
rRNA gene PCR [17] and 18  S rRNA gene PCR [18]. 
The total RNA samples of M. grandis and seawater were 
converted into ds cDNA with random hexamer primers 
using RevertAid Premium Double Stranded cDNA Syn-
thesis Kit (Thermo Scientific, USA). DNA samples of 
different coral and algal individuals (n = 3) were pooled 
together because they were used only as a simple con-
trol for sponge microbiome analysis. To enable sponge 
transcriptome sequencing, the total mRNA of sponge 
was extracted and purified per the method described by 
Riesgo et al. [19] was used for the sponge samples’ mRNA 
purification.

454 pyrosequencing and data analysis
The bacterial V3-V4 16  S rRNA fragments and fungal 
D1-D2 28 S rRNA fragments were amplified from sponge 
cDNA samples (biological triplicates for each niche) 
(Table S1) [17, 20]. In addition, DNA of seawater was used 

to serve as a control/background for sponge datasets. 
Sequencing on Roche GS FLX + was carried out in Per-
sonalbio Inc. (Shanghai, China). The forward amplicons 
were kept for further analysis. For 16 S rRNA sequencing 
data, the reads were trimmed to 300 nt and a cutoff of the 
expect error > 0.5 was used to filter out the low-quality 
reads. USEARCH ‘derep_fulllength’ command with the 
‘-sizeout’ option was used for dereplication. Quantita-
tive insights into microbial ecology (QIIME) pipeline v1.9 
was then used for bacterial OTU picking and diversity 
analysis following the official tutorial [21, 22]. A cutoff of 
3% dissimilarity was used in open-reference operational 
taxonomic units (OTU) picking (pick_open_reference_
otus.py). Oligotyping program was leveraged to dissect 
the predominant bacterial members on single-nucleotide 
level [23]. For fungal 28  S rRNA sequencing data, the 
reads were trimmed to 250 nt and a cutoff of the expect 
error > 0.5 was used to filter out the low-quality reads. For 
fungal community profiling, UPARSE pipeline (usearch 

Fig. 1  Sampling map. (a) Location of Coconut Island, (b) Aerial image sourced from Google Earth. Spot A, 21°25’47”N, 157°47’31”W. Spot B, 21°25’57”N, 
157°47’12”W. (c) M. grandis on rocks (spot A), (d) M. grandis on the surface of coral P. compressa (spot B), (e) M. grandis under alga G. salicornia (spot B, 
inverted view)
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8.1) was used for further quality control and OTU pick-
ing by a 99% similarity cutoff [24]. The taxonomic anno-
tation of representative sequences of bacterial OTUs 
and fungal OTUs was carried out using ribosomal data-
base project (RDP) Classifier with default settings. The 
16  S rRNA reference version 10 and Fungal LSU train-
ing set 11 were used in RDP analysis, respectively [25]. 
The biological observation matrix (BIOM)-format OTU 
table was imported into QIIME 1.9 for statistical analysis. 
Due to the incompatibility between the default aligning 
algorithm of QIIME and the 28 S rRNA sequences dur-
ing UniFrac analysis, the alignment of fungal sequences 
was analyzed with MAFFT algorithm in QIIME. The pre-
dominant OTUs were also deconstructed by Oligotyping.

GeoChip microarray analysis
The total DNA and ds cDNA of sponge specimens 
(n = 2 × 3 × 3, biological triplicates for each niche), along 
with the total DNA of coral and algal samples, were 
amplified and quantified using GeoChip 4.6. Hybridiza-
tions was performed at 42  °C with 40% formamide for 
16 h on a MAUI hybridization station (BioMicro, USA). 
Signal conversion, raw data collection and data normal-
ization were provided by GLOMICS (https://www.glo-
mics.com/gch-tech.html). In this study, spots with both 
DNA and cDNA signals were considered as positive and 
used for further analysis. The initial data analysis was 
carried out with the pipeline for GeoChip named Micro-
array Data Manager (GeoChip IV) (http://ieg2.ou.edu/
NimbleGen/). The ordination analysis, univariate and 
multivariate statistics were performed using Past 4.02 
[26] and R-3.3.3 [27], as well as heatmap visualization.

Our goal was to investigate the activity of functional 
genes, i.e. transcriptional richness, therefore to ensure 
accuracy, we used the ratio of cDNA to DNA to rule 
out the overestimation of transcripts due to a high copy 
number of genes. The expression ratio was determined 
by the ratio of cDNA to DNA signals for each spot. This 
was done to enable a comparison of the expression levels 
of different variants. A variant was classified as a high-
expression-ratio variant if its expression ratio exceeded 
the median expression ratio of the sample group.

Establishing sponge host’s transcriptome based on RNA-
Seq
Mycale grandis mRNA libraries (n = 3 × 3, biological trip-
licates for each niche) were prepared using TruSeq RNA 
Sample Prep Kit (Illumina, USA) and sequenced using 
HiSeq2000 technology (Illumina, USA) at GENEWIZ 
company (Suzhou, China). Before de novo assembling, 
low quality read ends (first base with Q-score < 20, cor-
responding to an error probability of 0.01, up to the 3’ 
end) and sequencing adapters were trimmed using cus-
tom java scripts. All datasets were pooled and assembled 

using Trans-ABySSv1.5.2 with multiple k-mers [28]. 
Potential coding sequences (CDSs) were predicted by 
TransDecoder (transdecoder.github.io). Redundant CDSs 
were clustered by CD-HIT-EST (v4.6) alignments using 
95% sequence identity as the cutoff [29]. We used Ghost-
KOALA to analyze all CDSs and determine their poten-
tial taxonomic affiliations [30]. Among the GhostKOALA 
annotations, we focused on CDSs affiliated with Metazoa 
and identified 148,052 such sequences. Of these, 48,000 
showed affiliation with the poriferan reference species, 
Amphimedon queenslandica. These 148,052 CDSs were 
used as the reference transcriptome for the M. grandis 
host’s differential expression analysis.

Differentially expressed gene (DEG) analysis
Short reads were aligned to aforementioned reference 
transcriptome using the burrows-wheeler alignment 
tool (BWA), v0.7.5a-r405 [31]. A count table was gener-
ated using SAMtools based on the BWA output. CDSs 
with a total count lower than 10 (less than 1 read per 
sample) were excluded before differential expression 
analysis [32]. The read counts of the remaining 139,578 
CDSs were imported into DESeq2 in R environment [33]. 
Following the standard DESeq2 manual and filtering 
reads with FDR < 1%, the differentially expressed CDSs 
(hereafter DE CDSs) were identified for three compari-
sons between every two niches [33]. The blastp analysis 
and retrieval of Gene Ontology terms were performed 
in Blast2GO v3.2 using nr database with 10− 5 e-value 
[34]. The protein family annotations of DE CDSs were 
defined by InterProScan v5. RC7 with default param-
eters [35], using Pfam database as the primary annotating 
database, along with Gene3D, PRINTS, ProSiteProfiles, 
PANTHER, SMART, and SUPERFAMILY as complimen-
tary databases. The visualization of GO terms associated 
with DE CDSs was carried out using REVIGO web server 
and the TREEMAP package in R environment (https://
CRAN.R-project.org/package=treemap) [36]. The area 
of each rectangle in the treemap was proportional to the 
Benjamini-Hochberg (BH) corrected p-value, calculated 
using the ‘abs_log_pvalue’ option in REVIGO. Addition-
ally, Pearson correlation coefficients were calculated to 
assess the relationship between DE CDSs and symbiotic 
microbial traits. The Pearson correlation coefficients 
were calculated between 1) normalized read numbers of 
each DE CDS and the Shannon index of functional gene 
diversity across nine samples, 2) normalized read num-
bers of each DE CDS and medians of the expression ratio 
across nine samples, These calculations were performed 
in Microsoft Excel 2016 using the ‘PEARSON’ function. 
Then a two-tail T-test was applied to define the signifi-
cance of each r value. DE CDSs with a significant Pear-
son correlation (P < 0.01) to at least one of the factors 

https://www.glomics.com/gch-tech.html
https://www.glomics.com/gch-tech.html
http://ieg2.ou.edu/NimbleGen/
http://ieg2.ou.edu/NimbleGen/
https://CRAN.R-project.org/package=treemap
https://CRAN.R-project.org/package=treemap
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(Shannon index of functional gene and/or median of 
expression ratio) were selected for further analysis.

Results
The rRNA pyrosequencing reveals uniform bacterial and 
fungal communities across three different niches
A total of 589 bacterial operational taxonomic units 
(OTUs) and 72 unique fungal OTUs were identified, 
with 94–247 bacterial OTUs and 32–37 fungal OTUs 
recovered from each sponge sample. One-way ANOVA 
indicated no significant differences in bacterial species 
richness and diversity across three different niches, while 
a slight variation was observed in fungal diversity (refer 
to Table S2). Taxonomic analysis showed 9 bacterial 
phyla and 11 fungal orders, with Betaproteobacteria and 
Capnodiales being the dominant taxa (Figs S1a and S1b). 
Notably, fungi exhibited low abundance and diversity in 
the sponge M. grandis compared with bacteria. Commu-
nity structure comparisons revealed distinct separations 
between sponge-associated and seawater microbes, yet 
no niche-dependent clustering patterns were identified 
within sponge datasets (Fig. 2a and b). Weighted UniFrac 
distance matrix comparisons confirmed the uniformity of 
bacterial and fungal community structures across three 
different niches (Table S3).

At the OTU level, three Betaproteobacteria OTUs and 
one Capnodiales OTU dominated sponge datasets but 
were minimally represented in seawater datasets (< 2%), 
indicating the sponge-specificity of these microbes (Figs 
S1c and S1d). To distinguish closely related taxa, oligo-
typing analysis was performed on the reads from three 
predominant Betaproteobacteria OTUs and one predom-
inant Capnodiales OTU. This revealed five oligotypes 
within the Betaproteobacteria OTUs without significant 
inter-niche variation (Bray-Curtis index-based one-way 
ANOSIM: R = 0.5007, P = 0.0604, permutation = 9999) 
(Fig. S2a and S2b). The Capnodiales OTU’s entropy anal-
ysis showed insufficient sequence variation, eliminating 
the need for further analysis (Fig. S2c).

Metatranscriptome and geoChip microarray analyses 
uncover an inter-niche variability of M. grandis symbiotic 
bacterial and fungal gene expression
A total of 415 bacterial and 119 fungal genes associ-
ated with carbon/nitrogen/phosphorus/sulfur (C/N/
P/S) metabolisms and stress response were identified 
(Table  1). Figure  2c and d illustrate the variability in 
genetic diversity and expression patterns, despite taxo-
nomic stability. A core set of 370 bacterial genes, rep-
resenting 89% of the identified sponge bacterial genes, 
were shared across three different niches, with only 23 
showing minor variations in relative abundance (Fig. 3a). 
For fungi, 54% of the detected genes were considered 
to be the core genes, with a few exhibiting significant 

variabilities across three different niches (Fig. 3b). Func-
tional gene categories displayed similar profiles across 
sponge, coral and algal datasets, with carbon degrada-
tion, organic remediation, and N/P/S transfer being pre-
dominant (Table  1). Bray-Curtis index based One-way 
ANOSIM (done in PAST 4.02) indicated the significant 
dissimilarity of core bacterial gene diversity at phylum-
level (R = 0.6123, P = 0.0227 < 0.05, permutation = 9,999) 
and species-level (R = 0.4939, P = 0.0037 < 0.01, permuta-
tion = 9,999). In addition, the inter-niche variant dissimi-
larity of core fungal genes was significant at phylum-level 
(R = 0.5385, P = 0.0312 < 0.05, permutation = 9,999) and 
order-level (R = 0.7942, P = 0.0043 < 0.01, permuta-
tion = 9,999). This notion linked the niche-related separa-
tion to the inter-niche dissimilarity.

The expression ratio was calculated to reflect the tran-
scriptional richness of a certain variant, i.e. cDNA sig-
nal density/DNA signal intensity. Community-level 
comparisons demonstrated that when M. grandis grew 
under algal mats (SAC), the dispersion degree became 
larger, and the median of expression ratios was signifi-
cantly lower (One-way ANOVA: Pbacteria=0.0023 < 0.01; 
Pfungi=0.0012 < 0.01) (Fig. 4a and b). As shown in Fig. 4c, 
the intra-overlapping rate of positive bacterial variants 
were ∼  80% and the inter-overlapping rate ranged from 
50 to 80%. Whereas for high-expression-ratio variants, 
the intra-niche overlapping rate was generally below 50% 
and the inter-niche overlapping rate was generally lower 
than 40%. Similar trend with lower overlapping rates was 
observed in the comparisons of fungal datasets, with the 
inter-niche overlapping rate of high-expression-ratio 
variants dropped under 20% (Fig.  4d). The inter- and 
intra-niche variability of high-expression-ratio variants 
were prevalent, we could hardly find a certain variant 
with stable intra-/inter-niche expression ratio. Genes 
related to the major geochemical cycles (C/N/P/S) were 
shown in Fig.  5 and S4. Consequently, the inter-niche 
variability of high-expression-ratio variants was obvious, 
particularly sponge M. grandis under alga G. salicornia 
were significantly different from the other two niches.

Variability of sponge host’s gene expression profiles across 
three different niches
We detected 22,908 DE CDSs from three pairwise com-
parisons of the host transcriptome. About 36% (8,283) 
DE CDSs had non-ambiguous blast hit (neither ‘hypo-
thetical’ nor ‘predicted’ proteins), about 22% (5,147) DE 
CDSs had protein family annotations, and about 20% 
(4,544) DE CDSs had GO annotations. The ordination 
analysis elucidated a clear separation among three groups 
(SDC, SAC and SCC) of sponge hosts (Fig. 2e), in which 
the niche type (PC1) explained 46% of the variance. Gene 
ontology treemaps demonstrate that the host’s biologi-
cal processes vary between different niches (Fig. S5). 
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For example, compared with M. grandis on rocks, the 
response stress and carbohydrate metabolism related 
genes were upregulated for M. grandis under alga G. sali-
cornia, the response stress and glucosinolate catabolism 
related genes were upregulated for M. grandis on the 
surface of coral P. compressa. These results, interesting 
but not unexpected, implied that the sponge hosts were 
under different physiological status and might cope with 
different biotic and abiotic stimulus.

To provide insights into the host-microbe interplay, we 
calculated the correlation pattern between the sponge 
host DE CDSs and microbial symbiont traits. There 
were 2804 DE CDSs correlating with the variation of 
gene expression ratio medians (p < 0.01), including 1156 
DE CDSs with protein family annotation, encompass-
ing 380 protein families. Based on Pearson correlation 
coefficients, we identified 972 DE CDSs that correlated 
with the variation of functional gene shannon indexes 

Fig. 2  Illustration of niche-related pattern. Detrended Correspondence Analysis (DCA) on bacterial 16 S rRNA sequencing data (a) and fungal 28 S rRNA 
sequencing data (b); GeoChip bacterial datasets (c), and GeoChip fungal datasets (d). Principal Components Analysis (PCA) on sponge transcriptomic 
datasets (e). Code: SW– seawater; SA–M. grandis under alga G. Salicornia; SC–M. grandis on coral P. compressa; SD–M. grandis on rocks. If a code contains 
two letters, it means the data is derived from total DNA. Whereas if a code contains three letters, it means the data is derived from total cDNA. For example, 
SA means the data is derived from the total DNA of M. grandis when it grows under the algal mats. SAC mean the data is derived from the total cDNA of 
M. grandis when it grows under the algal mats
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Bacterial category SAC (8.85 ± 0.03) SCC (9.36 ± 0.12)** SDC (8.93 ± 0.02)* Alga (9.42) Coral (9.41)
Carbon cycling
Acetogenesis 109.33 ± 5.13 176.33 ± 17.47 114 ± 0 155 159
Carbon degradation 2559.66 ± 46.3 4038.66 ± 449.05 2734.66 ± 63.21 3785 3583
Cellulose 231.66 ± 9.6 385 ± 39.23 245.66 ± 1.52 324 340
Chitin 503.66 ± 21.12 895.66 ± 88.11 529 ± 15.39 747 780
Hemicellulose 214.33 ± 5.13 347 ± 44.5 221.66 ± 6.42 317 307
Lignin 39.33 ± 2.08 60.66 ± 8.38 34.66 ± 0.57 56 57
Pectin 22 ± 0 23.33 ± 0.57 22 ± 0 3 2
Starch 1275.66 ± 36.29 1875.66 ± 214.64 1396.66 ± 29.73 1895 1662
Carbon fixation 280 ± 5.56 491.33 ± 49.81 291.33 ± 10.06 437 443
Methane 31.33 ± 3.05 42.33 ± 8.08 33 ± 1 38 43
Nitrogen
Ammonification 181.33 ± 6.02 283 ± 41.58 193 ± 6.24 249 272
Anammox NA 1.66 ± 0.57 NA 2 2
Assimilatory N reduction 58.33 ± 2.08 104 ± 14.73 58.66 ± 0.57 88 94
Denitrification 275.66 ± 13.2 529.66 ± 58.85 296.33 ± 6.8 430 492
Dissimilatory N reduction 69 ± 2.64 111.66 ± 10.4 70 ± 3 90 102
Nitrification 124 ± 6.55 197 ± 23.38 135 ± 1.73 180 185
Nitrogen fixation 163.66 ± 4.5 243.66 ± 29.26 179.33 ± 4.5 239 228
Organic remediation
Aromatics 429 ± 18.52 970.66 ± 142.69 476 ± 13.45 805 807
Chlorinated solvents 30 ± 1 68.66 ± 11.01 34.66 ± 1.52 55 55
Herbicides 46.33 ± 2.51 111.33 ± 17.95 48.66 ± 0.57 74 85
Other Hydrocarbons 31.66 ± 2.51 72.66 ± 8.38 31 ± 2 57 61
Pesticides 23 ± 1.73 41.66 ± 8.38 21.66 ± 0.57 40 35
Phosphorus 359.33 ± 18.71 638 ± 69.31 383.66 ± 9.45 505 587
Stress
Cold shock 2 ± 0 5.33 ± 2.88 2 ± 0 4 4
Glucose limitation 3 ± 0 6.66 ± 0.57 3 ± 0 5 5
Heat shock 45 ± 2 88.66 ± 15.3 54 ± 2 71 83
Nitrogen limitation 33.33 ± 2.08 81 ± 14.79 41.66 ± 2.08 69 68
Osmotic stress 11.66 ± 1.52 29 ± 2.64 15 ± 1 25 25
Oxygen limitation 36.66 ± 0.57 73.33 ± 12.42 40.33 ± 2.88 69 63
Oxygen stress 104.33 ± 5.85 257 ± 55.43 129.66 ± 0.57 194 203
Phosphate limitation 121 ± 2.64 259.33 ± 52.44 150.66 ± 3.51 194 217
Protein stress 15.66 ± 0.57 29.66 ± 3.21 17 ± 0 24 23
Radiation stress 31 ± 0 64.66 ± 10.21 35.33 ± 2.88 46 52
σ-factors 103.66 ± 5.13 254 ± 34.87 116 ± 5.29 196 207
Sulphur
Adenylylsulfate reductase 36.66 ± 0.57 77.33 ± 5.03 39.66 ± 2.08 61 66
Sulfite reductase 297.66 ± 5.77 514 ± 63.23 315.33 ± 8.02 446 442
Sulphur oxidation 114 ± 5.56 183.33 ± 24.58 118.66 ± 5.85 152 179
Fungal category SAC

(5.3 ± 0.04)
SCC
(6.06 ± 0.11)**

SDC
(5.39 ± 0.02)

Alga
(6.93)

Coral
(6.81)

Carbon degradation
α-galactoside 3.33 ± 0.57 5.33 ± 2.88 5 ± 1.73 9 14
Cellulose 24 ± 1 47 ± 9.64 19.33 ± 1.15 102 99
Chitin 16.33 ± 2.88 29.33 ± 5.68 12.33 ± 0.57 75 62
Cuitin 1 ± 0 4.66 ± 2.3 2 ± 0 7 2
Glucan 3.33 ± 0.57 6.33 ± 0.57 1 ± 0 18 15
Hemicellulose 8 ± 0 27.33 ± 4.72 13 ± 1 53 59
Inulin NA 1 ± 0 2 ± 0 2 3
Lignin 49.33 ± 3.51 111.33 ± 21.96 65.66 ± 3.05 242 227

Table 1  Main functional categories and signal counts in GeoChip microarray
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(p < 0.01). Figure 6 shows the top major protein families 
correlated with the microbial functional gene diversity 
and expression ratio changes, e.g. ankyrin repeat (ANK), 
Leucine-rich repeat (LRR) and Scavenger Receptor Cys-
teine-Rich (-like) domain (SRCR). Most of these protein 
families are positively correlated to microbial functional 
gene diversity and expression ratio changes, e.g. ANK, 
SRCR, LRR, while few e.g. EF-hand domain and ion 
transport domain show negative relationship.

Discussion
Niche–dependent sponge hologenome expression 
profiles: host and its bacterial/fungal symbionts
Though environmental factors can affect the microbial 
community to some extent, in general, the core micro-
bial community of a sponge species is relatively stable 
over different habitats, because of the host’s role in deter-
mining its symbiotic microbial community [3, 9, 10]. In 
the case of M. grandis, our previous DNA-based studies 
illustrated that M. grandis had relative consistent bacte-
rial/fungal community [15, 16]. Compared with these 
DNA-based sponge microbial community analysis, the 
RNA-based approach is deemed to be more sensitive to 
the host physiological and environmental impacts. In 
this study, according to RNA-based 16 S rRNA and 28 S 

rRNA sequencing analysis, no significant difference in 
bacterial and fungal richness/diversity was observed for 
M. grandis across all the three different niches (Fig. 2 and 
S1). This result supported the notion that sponge host 
plays a key role in determining the complexity of symbi-
otic microbial communities regardless the different habi-
tat types [3].

GeoChip microarray, a comprehensive microarray, has 
been developed and applied to study functional diversity 
and metabolic potential [37]. Probes on the GeoChip, 
which are species-specific or group-specific, allowed 
assessment of inter-niche difference at the variant level. 
The extensive and specific probe sets on GeoChip pro-
vide a fine resolution for decoding the functions and 
activities of M. grandis microbiome. In this study, Geo-
Chip, together with metatranscriptome analysis, uncov-
ered niche-dependent functional gene diversity and 
expression pattern of bacterial and fungal symbionts in 
three different niches (Figs. 3, 4 and 5 and S3-4; Table 1), 
indicating an inter-niche variability of M. grandis micro-
biome to niche response/adaptation.

To date, the sponge host’s metabolism and metabolic 
change in different niches are rarely known. It is the 
first time to investigate the sponge host’s gene expres-
sion profiles under different niches in this study. The 

Bacterial category SAC (8.85 ± 0.03) SCC (9.36 ± 0.12)** SDC (8.93 ± 0.02)* Alga (9.42) Coral (9.41)
Pectin 1 ± 0 4.33 ± 0.57 1.66 ± 0.57 10 9
Polygalacturonate 6.66 ± 0.57 19.33 ± 2.88 8 ± 1 36 27
Starch 15.33 ± 1.52 28 ± 3.46 16 ± 1 64 56
Chitin synthesis 17 ± 1 24.33 ± 3.05 21 ± 1.73 60 56
Iron
Iron transport 2.33 ± 0.57 5.33 ± 0.57 2 ± 0 10 7
Iron uptake 5 ± 1 16.33 ± 2.88 6.66 ± 0.57 33 39
Siderophore transporter 1 ± 0 3.66 ± 0.57 1 ± 0 8 7
Siderophore synthesis 1.66 ± 0.57 1 ± 0 1 ± 0 5 5
Nitrogen
Ammonification 1.33 ± 0.57 3.33 ± 0.57 2.66 ± 0.57 9 7
Denitrification 4.66 ± 1.15 9.66 ± 2.3 3 ± 0 20 16
Organic Remediation
Aromatics 51.66 ± 2.3 111 ± 22.6 58.66 ± 1.15 216 208
Phosphorous
Phosphorus utilization 6.33 ± 0.57 11 ± 2 5.33 ± 0.57 25 22
Stress
Heat shock 1 ± 0 4 ± 1.73 1.66 ± 0.57 13 6
Nitrogen limitation 1.66 ± 0.57 9 ± 2.64 NA 15 13
Oxygen stress 10.66 ± 0.57 19 ± 3.46 12 ± 1 38 38
Phosphate limitation 1 ± 0 1.66 ± 0.57 NA 7 7
Sulphur
Sulfate transfer 1 ± 0 7.66 ± 2.3 1 ± 0 14 11
Sulfite reductase 6 ± 0 6.66 ± 0.57 5 ± 0 12 11
Note The meaning of the codes is the same with those in Fig. 2. The signal counts of sponge DNA datasets (SA, SD, and SC) are the same with the cDNA datasets, as 
only the spots with both DNA and cDNA signals are considered to be positive. For sponge datasets, values are shown as mean ± SD (n = 3). Shannon indices based on 
all positive signals are shown in brackets *P < 0.05, ** P < 0.01

Table 1  (continued) 
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Fig. 3  The relative abundance of bacterial (a) and fungal (b) functional genes are indicated by the normalized signal intensity (%). Genes with relative 
abundance significantly vary (P < 0.05) between different niches. Values are shown as the mean ± SE. The meaning of the codes is the same with those 
in Fig. 2
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niche-dependent M. grandis host transcriptome indicates 
sponge host’s different physiological status in three dif-
ferent niches (Fig. S5). Totally, the sponge hologenome 
(host and microbiome) functional profiles comparison 
indicates the response/adaptation of M. grandis holobi-
ont to different niches. For instance, the functional gene 
expression ratio in M. grandis under alga G. salicornia 
(SAC) was significantly lower compared with the other 
two niches (Fig.  4a and b), this might result from the 

stress from the alga G. salicornia e.g. shielding of sun-
light, lower pH, and drastic changes of dissolved oxygen 
[38]. According to the morphological features, M. grandis 
under the algal mats had smaller ostia and thinner tis-
sues compared to the other two niches (data not shown). 
The up-regulated gene expression found in the SAC 
sponge host, particularly the hypoxia, apoptotic process, 
and polysaccharide catabolic process related categories, 
are likely the reflection of interplay between M. grandis 

Fig. 4  Illustration of inter-niche microbial functional gene expression pattern. Violin plot depicting the distribution of expression ratio of bacteria (a) and 
fungi (b). Overlapping pattern of positive signals (upper) and high-expression-ratio signals (lower) from bacteria (c) and fungi (d). The meaning of the 
codes is the same with those in Fig. 2
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Fig. 5  Distribution of high-expression-ratio variants in bacterial genes ureC (a), nirK/S (b), and fungal genes in N/P/S cycling (c), phenol oxidase (d). More 
results please see Fig. S4. The meaning of the codes is the same with those in Fig. 2
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and these stress factors. Hypoxia can stimulate the oxi-
dant production and consequently induce DNA damage 
[39], which is possibly related to the observation of up-
regulated spliceosomal tri-snRNP complex assembly in 
this study. The up-regulation of polysaccharide catabolic 
metabolism implied M. grandis host was utilizing alter-
native carbon sources to compensate for the energy sup-
ply. The up-regulation of apoptotic process might also 
reflect the tendency of reducing the energy cost. As for 
SDC sponge datasets, the most distinguishable up-regu-
lated GO-term category was mechanical stimulus. It was 
potentially related to the relatively higher water impact, 
which could affect the pressure equilibrium of incur-
rent and excurrent canals, irritating the beating of fla-
gella, even clogging the canals. Demosponges, including 
Mycale, can contract the canals and close their ostia and 
oscula to gain control over the flow gradually. In the case 
of M. grandis on the surface of coral P. compressa (SC/
SCC), the diversity of bacterial and fungal genes related 
to C/N/P/S and stress was the highest compared with the 
other two niches (Table 1), indicating the possible com-
petition with coral P. compressa.

Sponge-microbes interplay in different niches: host’s 
innate immune and microbial recognition
Two key areas of the sponge-microbes symbioses are the 
molecular determinants of sponge-microbe interactions 
and how sponge innate immunity mediates the sponge 
microbiome [4]. The availability of a nearly complete 
genome for the sponge Amphimedon queenslandica has 
provided insights into how the host innate immune sys-
tem may contribute to holobiont interactions [1]. Pat-
tern recognition receptors (PRRs) are proteins expressed 
by cells of the host’s innate immune system. PRRs are 
thought to identify microbe-associated molecular pat-
terns and recognize microbial ligands encountered 
within the holobionts. When a PRR binds to a microbial 
ligand, it can set off a signal transduction cascade that 
results in the transcription of immune response genes 
encoding products with antibacterial activity [4]. PRRs 
from sponges, especially nucleotide-binding domain and 
Scavenger Receptor Cysteine-Rich (SRCR)-like domains, 
are thought to be the key innate immune factors medi-
ating sponge-microbe recognition [40]. A recent study 
on three sponge hologenomes showed that the SRCR 
domain is expanded in a low-microbial-abundance 
sponge (Stylissa carteri) compared with a high-micro-
bial-abundance sponge Xestospongia testafinaria [41]. 
The up-regulation of SRCR domain containing genes in 
the sponge Petrosia ficiformis was suggested to be in rela-
tion to the recognition of cyanobacteria [42]. Eukaryotic-
like proteins (ELPs) from sponge microbial symbionts 
have been illustrated as important factors mediating the 
amoebal phagocytosis [43], i.e. microbes with ELPs could 

probably escape the phagocytosis by the sponge hosts. 
N-terminal Ankyrin repeat (ANK) and Leucine-rich-
repeat (LRR) are prevalent in eukaryotes and involved in 
a wide range of protein-protein interaction and cell com-
munication [44, 45]. In addition to ANK and LRR, sponge 
genes related to cell adhesion and auto/allo-recognition, 
such as the immunoglobulin domain, were found to be 
present in the extracellular part of the receptor tyrosine 
kinase in the sponge Geodia cydonium [46].

This study identified 33 DE CDSs encompassing innate 
immunity and adhesion correlated with symbionts’ func-
tional genes (Figs. S6 and S7). The expression of genes 
encoding protein families related to innate immunity 
and microbial recognition, e.g. SRCR, ANK and LRR, 
changed with the niches and appeared to be highly cor-
relate with the microbial attributes (Figs.  6 and S6-S7). 
Other protein families such as P-loop containing nucleo-
side triphosphate (NTP) hydrolase, Kelch-type beta pro-
peller, and Ser-Thr/Tyr-protein kinase catalytic domain 
were found in a wide spectrum of biological processes 
[21, 47]. The detected differential expression of those 
protein families (Fig.  6), together with the host’ intra-
cellular signal transduction-related gene expression 
changes (Fig. S5), could affect the host-microbe interac-
tion via multiple signaling pathways and/or metabolic 
interactions. Though it is difficult to link the specific 
biological processes to the variations of these functional 
gene diversity and transcriptional richness, these results 
underscore the importance of these proteins in sponge-
microbe interaction and potential critical roles in the 
regulation/selection of symbionts. Particularly, the fact 
that the expression profiles of M. grandis host’s genes 
related to innate immunity are closely correlated with the 
genes’ diversity and transcriptional richness of symbiotic 
microbes indicates the close and dynamic host-microbes 
association.

Conclusion
In this study, the RNA-based analysis indicates M. gran-
dis has largely similar bacterial and fungal communities 
across different niches. However, GeoChip microarray 
and metatranscriptome analyses reveal niche-depen-
dent functional gene diversity and transcriptional rich-
ness of bacterial and fungal symbionts. Furthermore, 
niche-related physiological status of sponge host is 
implied since its gene expression patterns are niche-
dependent. Notably, the innate immunity of the sponge 
host is implied to be closely related to the diversity and 
transcriptional richness of its symbiotic microbes. Of 
course, these findings need to be echoed by more spe-
cies of sponges with different phylogenetic and bio-
geographical profiles since this report is only a case of 
M. grandis holobiont in three different niches. Even so, 
the results from this study support the hypothesis that 
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the gene expression and interplay of host-microbes of a 
specific sponge species are niche-dependent though the 
symbiotic microbial community is relative stable, provid-
ing novel insights into the black box of sponge holobi-
onts at the hologenome level. The niche-related sponge 
holobiont metabolic profiles and host-microbes inter-
play is helpful for our understanding of the adaptation of 
encrusting sponge M. grandis to different niches.
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