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Methanomethylovorans are the dominant 
dimethylsulfide‑degrading methanogens 
in gravel and sandy river sediment microcosms
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Abstract 

Background  Rivers and streams are important components of the global carbon cycle and methane budget. How-
ever, our understanding of the microbial diversity and the metabolic pathways underpinning methylotrophic meth-
ane production in river sediments is limited. Dimethylsulfide is an important methylated compound, found in fresh-
water sediments. Yet, the magnitude of DMS-dependent methanogenesis nor the methanogens carrying out this 
process in river sediments have been explored before. This study addressed this knowledge gap in DMS-dependent 
methanogenesis in gravel and sandy river sediments.

Results  Significant methane production via DMS degradation was found in all sediment  microcosms. Sandy, 
less permeable river sediments had higher methane yields (83 and 92%) than gravel, permeable sediments (40 
and 48%). There was no significant difference between the methanogen diversity in DMS-amended gravel and sandy 
sediment microcosms, which Methanomethylovorans dominated. Metagenomics data analysis also showed the domi-
nance of Methanomethylovorans and Methanosarcina. DMS-specific methyltransferase genes (mts) were found in very 
low relative abundances whilst the methanol-, trimethylamine- and dimethylamine-specific methyltransferase 
genes (mtaA, mttB and mtbB) had the highest relative abundances, suggesting their involvement in DMS-dependent 
methanogenesis.

Conclusions  This is the first study demonstrating a significant potential for DMS-dependent methanogenesis in river 
sediments with contrasting geologies. Methanomethylovorans were the dominant methylotrophic methanogen in all 
river sediment microcosms. Methyltransferases specific to methylotrophic substrates other than DMS are likely key 
enzymes in DMS-dependent methanogenesis, highlighting their versatility and importance in the methane cycle 
in freshwater sediments, which would warrant further study.
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Introduction
Freshwater ecosystems such as lakes, rivers and streams 
are important components of the global carbon cycle. 

These ecosystems account for around half of the meth-
ane emitted to the atmosphere (538–884 Tg y−1), con-
tributing considerably to the global greenhouse gas 
budget [53]. In particular, rivers were estimated to emit 
27.9 Tg methane per year despite accounting for around 
0.58% of the Earth’s non-glaciated surface area [1, 52]. 
Since the importance of rivers for global methane emis-
sions has only recently been acknowledged, studies on 
methane production pathways and underlying microbial 

*Correspondence:
Ö. Eyice
o.eyice@qmul.ac.uk
1 School of Biological and Behavioural Sciences, Queen Mary University 
of London, London, UK

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40793-024-00591-4&domain=pdf


Page 2 of 11Tsola et al. Environmental Microbiome           (2024) 19:51 

populations in the river sediments are scarce, impeding 
progress in projecting global greenhouse gas emissions.

Recent studies suggest a strong influence of climatic 
factors, adjacent soil characteristics (e.g. organic car-
bon stock, groundwater table depth and primary pro-
duction) and geomorphological variables (e.g. sediment 
properties, river slope and elevation) on methane pro-
duction and emission rates from river ecosystems [52]. 
Among the physical factors affecting methane produc-
tion is the sediment grain size, which may substantially 
alter the sediment permeability, organic and inorganic 
matter content and sediment oxygen concentrations 
[19, 22, 26, 37, 52]. For instance, sandy riverbeds are 
less permeable than gravel riverbeds and are most likely 
to contain anoxic zones, where methane production 
can be observed [3, 24, 31, 59, 66].

Methanogenesis in river sediments has mainly been 
attributed to the hydrogenotrophic and acetoclastic 
pathways; however, methanogenesis through the degra-
dation of methylated compounds such as methanol and 
dimethylsulfide (DMS) was also shown in freshwater 
ecosystems [38, 38, 39, 39, 40]. In freshwater sediments, 
the degradation of sulfur-containing aminoacids and 
methoxylated aromatic compounds as well as meth-
anethiol methylation and dimethyl sulfoxide (DMSO) 
reduction results in DMS production [55, 56]. How-
ever, DMS degradation was only studied in freshwater 
peatland and lake sediments [15, 38, 39]. More recently, 
we have demonstrated that as much as 41% of DMS 
amended to the River Medway (UK) sediments were 
anaerobically degraded to methane, likely contributing 
to the in situ methane production in this river sediment 
[68].

Methanogen populations undertaking anaerobic DMS 
degradation and their metabolic pathways are poorly 
characterised. A limited number of species from the 
genera Methanomethylovorans, Methanolobus, Metha-
nosarcina and Methanohalophilus were isolated from 
freshwater and saline ecosystems as DMS-degrading 
methanogens [16, 25, 36, 38, 39, 42, 45, 47]. Further, 
methylthiol:coenzyme M methyltransferase (Mts) was 
shown to catalyse the formation of methane from DMS 
in Methanosarcina strains [18, 46, 63]. Our recent study 
has also shown the involvement of methanol- and tri-
methylamine-methyltransferases in anaerobic DMS deg-
radation in brackish sediments [67]. Yet, we do not know 
whether these represent the dominant DMS-degrading 
methanogen populations and key genes in this process in 
river sediments.

We hypothesised that DMS may be an important meth-
ane precursor in river sediments, which may harbour dif-
ferent methylotrophic methanogen populations based on 
grain size and permeability. We tested this hypothesis by 

quantifying the extent of DMS-dependent methanogen-
esis in river sediments with contrasting grain sizes and 
characterising the methanogen diversity driving this pro-
cess. We also provided the first insight into the potential 
metabolic pathways of DMS-dependent methane pro-
duction in river sediments.

Methods
Site characteristics and sediment sampling
Three sediment cores (3.5  cm Ø) were collected from 
each sampling site in the UK in February 2019 (Riv-
ers Pant and Rib) and in March 2021 (Rivers Medway 
and Nadder; Fig.  1) to set up microcosms. Approxi-
mately 1 L of sediment from the top 5 cm were also col-
lected from the sites and were screened through 2  mm 
and 0.0625  mm sieves to characterise the sediment as 

Fig. 1  The UK map and the location of the rivers sampled for this 
study. Colour indicates sediment grainsize. Light grey: Gravel, black: 
Sandy. The coordinates for the rivers are: River Pant—52.0044, 
0.316916; River Rib—51.83917, − 0.02936; River Medway—51.26798, 
0.518439; River Nadder—51.04385, − 2.11182
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gravel (sediment size > 2 mm) or sandy (2 mm < sediment 
size < 0.0625 mm; Supplementary Table 1; [73]).

Microcosm set‑up
Five replicated microcosms were set up per sampling 
site in 140  mL serum bottles (Wheaton, USA) in an 
anaerobic glove box (Belle Technology, UK). We mixed 
the sediment from the three cores (depth 4–10  cm) 
and used 5  g of homogenised sediment and 40  mL of 
growth medium (pH 7), which contained 3.2 mM NaCl, 
0.1  mM MgSO4·7H2O, 0.088  mM NaNO3, 0.031  mM 
CaCl2·2H2O, 0.1 mM MgCl2·6H2O, 0.9 mM Trizma base, 
2.1 µM K2HPO4

.3H2O, trace elements, and vitamins [76, 
77]. The trace element solution was prepared according 
to DMSZ media 141 and modified to contain FeC6H6O7 
(5 g) instead of N(CH2CO2H)3 and no Na2WO4·2 H2O.

Samples were initially amended with 2 µmol DMS g−1 
wet sediment through gas-tight glass syringes as the only 
energy and carbon source. After the first DMS addition 
was depleted, 4 µmol DMS g−1 wet sediment was added 
in each subsequent amendment to avoid DMS toxicity. A 
total of 43–154 µmol DMS g−1 sediment was consumed 
by the end of the incubation period. Two sets of con-
trols (three replicates per each set) were also established. 
One set contained no DMS and the second set contained 
thrice autoclaved sediment with DMS to monitor the 
DMS adsorption by sediment. All microcosm bottles 
were kept at 22 °C and in the dark to avoid photochemi-
cal destruction [7].

Analytical measurements
Headspace DMS in the microcosm bottles was meas-
ured using a gas chromatograph (GC; Agilent Technolo-
gies, 6890A Series, USA) fitted with a flame photometric 
detector (FPD) and a J&W DB-1 column (30 m × 0.32 mm 
Ø; Agilent Technologies, USA). The oven temperature 
was set at 180  °C, and zero grade N2 (BOC, UK) was 
used as the carrier gas (26.7  mL  min−1). FPD run at 
250 °C with H2 and air (BOC, UK) at a flow rate of 40 and 
60 mL min−1, respectively. DMS standards were prepared 
by diluting > 99% DMS (Sigma-Aldrich, USA) in distilled 
water previously made anaerobic with oxygen-free N2 
(BOC, UK).

Methane and carbon dioxide (CO2) were measured 
using a GC (Agilent Technologies, USA, 6890N Series) 
fitted with a flame ionisation detector (FID), Porapak (Q 
80/100) packed stainless steel column (1.83 m × 3.18 mm 
Ø; Supelco, USA), and hot-nickel catalyst, which reduced 
CO2 to methane (Agilent Technologies, USA; [54]). The 
oven temperature was set at 30  °C, and zero grade N2 
(BOC, UK) was used as the carrier gas (14  mL  min−1). 
FID run at 300  °C with H2 and air (BOC, UK) at a flow 
rate of 40 and 430  mL  min−1, respectively. Certified 

gas mixture was used as standards (100  ppm methane, 
3700  ppm CO2, 100  ppm N2O, balance N2; BOC, UK). 
All methane concentrations were corrected for the head-
space-water partitioning using Henry’s law to calculate 
the total methane.

The total production of CO2 was the sum of the change 
of CO2 in the headspace and the total dissolved inor-
ganic carbon (ΣDIC = CO2 + HCO3

− + CO3
2−) in the 

water phase. For the ΣDIC, 3  mL of supernatant from 
each microcosm was collected in 3  mL gas-tight vials 
(Exetainer, Labco, UK) and fixed using 24 µL ZnCl2 (50% 
w/v). 100 µL of 35% HCl was added to acidify the samples 
and CO2 in the headspace was measured. An inorganic 
calibration series (0.1–8  mM; Sigma-Aldrich, USA) of 
Na2CO3 was used as standard [58].

Methane and CO2 concentrations in the control bottles 
were between 0.45–20  µmol/g and 0.035–1.95  µmol/g, 
respectively. These values were subtracted from the con-
centrations measured in DMS-amended microcosms.

Sequencing library preparation and sequence data 
analysis
DNA was collected from the bottles at the end of the 
incubation period and was extracted from 0.25  g sedi-
ment using the DNeasy Powersoil kit (Qiagen, NL) fol-
lowing the manufacturer’s instructions.

The mcrA gene, which encodes the α-subunit of the 
methylcoenzyme M reductase from all known metha-
nogens, was used as the methanogen molecular marker. 
The mcrA gene in each replicated microcosm was first 
amplified using the mcrIRD primer set [32] and a sec-
ond PCR was carried out using the same primer set with 
overhang adapters as was described in Tsola et  al. [68]. 
PCR products were further amplified to add dual indi-
ces and Illumina sequencing adapters. All PCR products 
were cleaned using JetSeq Clean beads (1.4x; Meridian 
Bioscience, USA), normalized using the SequalPrep Nor-
malization Plate kit (Invitrogen, USA) and sequenced at 
2 × 300  bp Illumina MiSeq Next Generation sequencing 
platform.

The sequence analysis was performed using QIIME2 
2021.11 on Queen Mary’s Apocrita HPC facility, sup-
ported by QMUL Research-IT [5, 30]. Taxonomy was 
assigned to the ASVs using Naive Bayes classifiers, 
trained using the feature-classifier command in QIIME2 
[4] and a custom-made mcrA database. These databases 
were prepared using FunGenes [17], Python 3.10.8 and 
the RESCRIPt [50] package in QIIME2 2021.11 [5].

Quantitative polymerase chain reaction (qPCR)
Quantitative PCR (qPCR) of the mcrA gene was per-
formed using the primers mlas-mod-F and mcrA-rev-R 
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[2, 62]. Each qPCR reaction was set up in triplicate using 
a Mosquito HV (SPT Labtech, UK) and performed as 
described in Tsola et al. [68]. Reactions contained 0.5 µL 
gDNA (normalised to 3  ng/µL), 0.1 µL of each primer 
(10  µM), 2.5 µL SensiFAST SYBR (No-ROX,Meridian 
Bioscience, USA) and 1.8 µL ultra-pure water. A melt 
curve analysis was performed to detect non-specific 
DNA products by increasing the temperature from 65 
to 95 °C in 0.5 °C increments. Standard curves were pro-
duced using a serial 10-fold dilution of clones contain-
ing the mcrA gene. The efficiency of all reactions was 
between 90 and 110%, and the R2 value for the standard 
curves was > 99%.

Statistical analysis
Statistical analysis of the sequencing data and the prin-
cipal coordinate analyses (PCoA) with Bray–Curtis dis-
similarity were performed using the R package microeco 
[35]. Spearman’s correlation analyses (rs) between the 
first three PCoA coordinates and experimental variables, 
such as DMS consumption, methane and CO2 produc-
tion, and grain size, were conducted using PAST (4.2; 
[20]). Data were visualised using R (4.2.1) on RStudio 
(2022.07.1; [49]) and ggplot2 [74].

Shotgun metagenomics
Shotgun metagenomics analysis of the sediment sample 
from the River Pant microcosm was conducted by the 
U.S. Department of Energy (DOE) Joint Genome Insti-
tute (JGI) using the Illumina NovaSeq 6000 platform 
(2 × 150  bp). The DNA sample had a concentration of 
10  ng/µL as measured by Qubit 2.0 Fluorometer (Invit-
rogen, USA), an A260/280 ratio of 1.75 and an A260/230 ratio 
of 1.88. The sequence analysis was carried out following a 
well-established JGI-created workflow [13].

The MetaCyc and KEGG databases were used to find 
the genes associated with methylotrophic methanogen-
esis and other key genes in methanogenesis (Supplemen-
tary Table 2; [9, 27]). The gene counts in the metagenome 
dataset were normalised using the CPM (copies per mil-
lion) normalisation method [51]. The CPM values were 
then log-transformed and shown in a heatmap using R 
(4.2.1) on RStudio (2022.07.1) and ggplot2 [49, 74].

The genes associated with methylotrophic methano-
genesis were further explored for their taxonomic affili-
ation and grouped according to their genera. This was 
achieved using the JGI analysis output and confirmed 
by the nucleotide Basic Local Alignment Search Tool 
(BLAST; [8]).

Metagenome-assembled genomes (MAGs) were recov-
ered using MetaBAT 2.12.1 [28]. CheckM 1.0.12 was 
used for genome completion and contamination esti-
mates [48]. The MAGs were characterised as high (HQ) 

or medium quality (MQ) according to the Minimum 
Information about Metagenome-Assembled Genome 
(MIMAG) standards [6]. The MAGs, which do not con-
tain all rRNA genes were classified as medium-quality. 
Taxonomic affiliation was inferred using the Integrated 
Microbial Genome (IMG) and GTDB-tk (0.2.2) databases 
[11, 12].

Results
DMS‑dependent methane production in sediments 
with different grain sizes
Sediment grain size analysis showed Rivers Pant and Rib 
had permeable gravel riverbed sediments (gravel fraction: 
66.7 and 59.8%, respectively), whereas Rivers Medway 
and Nadder had less permeable sandy sediments (sand 
fraction: 86 and 90.1%, respectively).

Methane production was observed in all DMS-
amended microcosms although there was a lag phase 
before methanogenesis started (Fig.  2). Total methane 
generation was significantly higher in sandy Medway and 
Nadder sediments at 193 ± 1 and 167 ± 2  µmol methane 
g−1 than the gravel sediments from Pant and Rib at 22 ± 1 
and 15 ± 0.5 µmol g−1 (p < 0.05). Stoichiometrically, 1 mol 
of DMS can be converted to a maximum of 1.5  mol of 
methane, therefore, these values correspond to methane 
yields of 83 and 92% in Medway and Nadder, whilst to 40 
and 48% in Pant and Rib, respectively. It should also be 
noted that Medway and Nadder sediments exhibited con-
siderably longer incubation periods (108 and 134  days, 
respectively) than Pant and Rib sediments (54 days) until 
methane production reached the peak concentration 
(Fig. 2A).

CO2 production was also measured in the microcosms 
(Fig.  2B). The highest CO2 production occurred in the 
River Medway microcosms with 95 ± 3  µmol CO2 g−1 
wet sediment. This value was higher than the theoretical 
CO2 yield if DMS is only used through methanogenesis 
(77 µmol g−1, [57, 65]), suggesting an alternative pathway, 
such as sulfate-reduction, to CO2 production in this sedi-
ment. On the other hand, CO2 concentrations in River 
Nadder sediment accounted for 57% of the theoretical 
CO2 yield (60  µmol CO2 g−1). Rivers Pant and Rib had 
appreciably lower CO2 productions at 4.28 ± 0.3  µmol 
CO2 g−1 and 2.04 ± 0.2  µmol CO2 g−1, respectively, cor-
responding to 12 and 9% of theoretical yields, pointing 
toward simultaneous CO2 consumption in these sedi-
ment microcosms.

Diversity of methanogens in river sediments 
and DMS‑amended microcosms
To identify the methanogens in the sediment microcosms 
with DMS, the mcrA gene was sequenced. A total of 
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Fig. 2  A Average DMS and methane concentrations in river sediment microcosms using DMS as the only energy and carbon source. Rivers Pant 
and Rib have gravel-dominated riverbeds, whereas Rivers Medway and Nadder have sand-dominated riverbeds. Error bars were omitted to make 
the graph legible. Black line: DMS concentrations, red line: Methane concentrations. B Total concentrations of DMS degraded, and methane and CO2 
produced at the end of the incubation period. Error bars represent standard error above and below the average of five replicates
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1.4 × 106, quality-filtered, chimaera-free mcrA sequences 
were obtained and assigned to 5240 ASVs.

The methanogen diversity varied in the original and 
control sediments and was dominated by uncultured 
Methanosarcinales at relative abundances between 41 
and 86%. Uncultured Methanomicrobiales (3–36%) and 
Methanosarcina (2–9%) were also observed, while Rib 
and Medway sediments additionally had Methanothrix 
(4–14%; Fig.  3A). The methanogen diversity shifted 
significantly when the sediments were incubated with 
DMS (PERMANOVA, p < 0.001), yet no significant 
difference was observed between the DMS-amended 
gravel and sandy riverbed sediments (PERMANOVA, 
p > 0.05). This suggests that the community structure of 
the DMS-degrading methanogens was not affected by 

the sampling site and grain size. Methanomethylovorans 
became the dominant methanogen genus in the micro-
cosms with relative abundances between 53 and 91%, 
increasing from ~ 2% in River Pant sediments, ~ 0.4% in 
River Medway and undetectable levels in the sediments 
from Rivers Rib and Nadder (Fig.  3A). An increase in 
the relative abundance of Methanosarcina (22 ± 5%) and 
Methanococcoides (42 ± 15%) was also observed in the 
River Pant and River Medway microcosms, respectively.

The number of methanogens increased in all DMS-
amended sediments compared to the original and con-
trol sediments (Fig. 3C). River Medway had the highest 
abundance of in situ methanogens, which also exhibited 
the highest increase following the DMS addition from 
2.3 × 107 ± 0.6 × 107 copies g−1 to 9.1 × 108 ± 1.8 × 108 

Fig. 3  A Average relative abundance of the methanogens at the genus level in five original river sediment samples and five replicated DMS 
microcosms per site as determined via the amplification of the mcrA gene. B Principal Coordinate Analysis (PCoA) plots of the mcrA sequences 
based on Bray–Curtis dissimilarity metrics. Ellipses indicate 95% confidence intervals according to treatment data. Colours indicate treatment. 
Shapes indicate sampling sites. C Mean copy number of the mcrA gene per gram of sediment. Ori: Original sediment samples. Con: Sediment 
samples from the control microcosms. DMS: Sediment samples from the DMS-amended microcosms. Error bars represent standard error 
above and below the average of five replicates
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copies g−1. The other river sediment DMS micro-
cosms had similar methanogen abundances in the 
original sediments (0.2 × 106–2.9 × 106 copies g−1) and 
after DMS amendment (1.9 × 108–3.9 × 108 copies g−1) 
despite the difference in sediment grain sizes (Fig. 3C).

Spearman’s r correlation analysis of the PCoA coor-
dinates showed that 71.3% of the factors affecting the 
methanogen community structure can be attributed to 
DMS degradation, and methane and CO2 production 
(rs = 0.9, p < 0.001; Fig.  3B; Table  1). PCo2 correlated 
positively with grain size (rs = 0.4, p < 0.05), although 
no significant change was observed in the methanogen 

diversity between the sediment samples due to the 
grain size (Table 1).

Taxonomic analysis of metagenomes and potential 
metabolic pathways
Taxonomic assignment of the metagenomic sequences 
from the River Pant DMS microcosms showed that 
Methanosarcina and Methanomethylovorans dominated 
the archaeal populations with relative abundances of 
50 and 32%, respectively, as was also detected by mcrA 
sequencing. These genera have been reported to include 
DMS-degrading strains [38, 39, 41, 45]. The mtsA, mtsB 
and mtsH genes, which were shown to be the key genes 
in the DMS-dependent methane production in pure cul-
tures of Methanosarcina barkeri and Methanosarcina 
acetivorans, had low relative abundances in the metagen-
omic dataset (0.02, 0.02 and 0.01%, respectively) and 
belonged to Methanosarcina (Fig. 4B,[18, 63]). The mtsF 
and mtsD genes were found in comparatively higher rela-
tive abundances (0.30 and 0.64%, respectively) and were 
taxonomically assigned to Methanosarcina and Metha-
nomethylovorans (Fig. 4A and B). This suggests they are 
likely involved in DMS degradation in the River Pant sed-
iment. Amongst the other methylotrophic methanogen-
esis-related genes, the methanol-, trimethylamine- and 
dimethylamine-specific methyltransferases, mtaA, mttB 
and mtbB, stand out with the highest relative abundances 

Table 1  Spearman’s rank correlation coefficients (rs) between 
the first two principal coordinates of the mcrA diversity at the 
genus level, the DMS consumed (µmol), methane and CO2 
produced (µmol) and grain size (mm)

Statistically significant values are given in bold

***p < 0.001; *p < 0.05

Variable PCo1 PCo2

DMS consumed (µmol) 0.87*** 0.03

Methane produced (µmol) 0.87*** 0.02

CO2 produced (µmol) 0.86*** 0.02

Grain size (mm) − 0.08 0.43*

Fig. 4  A Heatmap showing the abundance of genes involved in methylotrophic methanogenesis in River Pant sediment microcosm with DMS. 
CPM: Copies per million reads. MMA: Monomethylamine, DMA: Dimethylamine, TMA: Trimethylamine, DMS: Dimethylsulfide, MT: Methanethiol, Me: 
Methanol B Bubble graph showing the abundance of the methanogens affiliated with methylotrophic methanogenesis-related genes in River Pant 
sediment microcosm with DMS. Other: Genera with a gene copy number < 50
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at 2.1, 2, and 2.3%, respectively (Fig.  4A). These genes 
were most closely affiliated with Methanosarcina, Meth-
anomethylovorans and Methanolobus (Fig.  4B). The rest 
of the methylotrophic methanogenesis-related genes 
(mtmBC, mtbABC, mttC, and mtaBC) had 0.8–1.8% rela-
tive abundance and were primarily assigned to the genera 
Methanosarcina, Methanomethylovorans and Methanolo-
bus (Fig. 4B).

All the genes in the mcrABCDG operon, which encodes 
methyl-CoM reductase catalysing the final step in meth-
ane formation, had a relative abundance of 0.4% (Supple-
mentary Fig.  1). These mcr genes were from the genera 
Methanosarcina, Methanomethylovorans and Methanolo-
bus. Furthermore, several other genes in central metha-
nogenic pathways (e.g. mtrA-H, hdrABCD, mvdADG, 
frhB) were found, however, the fpo and vho genes cata-
lysing coenzyme B/coenzyme M regeneration were not 
retrieved from the metagenome sequences (Supplemen-
tary Fig. 1).

A total of eight metagenome-assembled genomes 
(MAGs) were obtained from the Pant metagenome data-
set (seven medium quality and one high quality; Sup-
plementary Table  3). Yet, no methanogen MAG was 
recovered.

Discussion
The importance of rivers and streams for global methane 
emissions has only recently been recognised. Therefore, 
knowledge of the microorganisms and pathways under-
lying the production of methane in river sediments is 
limited.

All the river sediments tested within this study dem-
onstrated considerable potential to produce methane 
via DMS degradation. The sandy sediments from River 
Medway and Nadder had the highest DMS-to-methane 
yields with 83 and 92%. To the best of our knowledge, 
this is the maximum recorded methane yield from DMS 
degradation, which highlights the substantial potential 
of DMS as a methane precursor in sandy, less perme-
able river sediments. Interestingly, we previously showed 
a 41% methane yield in River Medway sediment [68]. 
Higher rainfall and river flow followed by increased aera-
tion and decreased nutrient concentrations were likely 
the reasons for lower methanogenic activity in our pre-
vious study. River Medway received 18 mm of rainfall in 
November 2018 compared to the 7 mm rainfall in March 
2021 when we carried out sampling for the current study 
[70, 71]. Despite substantial DMS-dependent methano-
genesis potential in all river sediments, there was a large 
difference in yields between the sediments with different 
grain sizes. The gravel Pant and Rib sediments exhibited 
methane yields between 40 and 48%, which are lower 

than those obtained from the sandy riverbed sediments 
but comparable to a study by Kiene et  al. [29] on lake 
sediment (63%) and our previous study on River Medway 
(41%). In addition to the permeability differences, sandy 
river sediments might have received more nutrients and 
organic material than gravel sediments, which likely led 
to higher methane yields [44, 60].

Methanomethylovorans dominated the DMS-amended 
sediments from all rivers although the only original 
samples we detected this genus were from the Rivers 
Pant and Medway. This points towards DMS-degrading 
methanogens having low in situ abundances in river sedi-
ments tested here. Methanomethylovorans are known 
methylotrophic methanogens, which were shown to 
degrade DMS in freshwater ecosystems [10, 23, 38, 39, 
68]. Our results demonstrated that the grain size and 
consequently the sediment permeability of river sedi-
ments did not affect the diversity of methanogens with 
DMS degradation potential, however, it strongly affected 
the capacity of this genus to degrade the available DMS 
to methane since different methane yields were obtained 
from different samples. Methanosarcina also increased 
in Rivers Pant and Rib following the addition of DMS. 
Members of the genus Methanosarcina are known to 
utilise most methanogenic substrates, including DMS 
[14, 41, 45, 61]. Therefore, Methanosarcina species likely 
performed DMS-dependent methanogenesis in the River 
Pant and Rib sediments. Similarly, Methanococcoides, 
another methylotrophic methanogen genus, increased 
in Rivers Pant, Rib and Medway, following the addition 
of DMS although no member of the Methanococcoides 
genus has been shown to degrade DMS before [21, 33, 
34]. Alternatively, they might have performed mixotro-
phy using CO2 produced as a metabolite during DMS 
degradation as was previously shown for Methanococ-
coides methylutens [78]. Methanococcoides are typically 
associated with saline environments such as saltmarshes, 
brackish lakes and tidal flats [43, 69, 75]. A plausible way 
for Methanococcoides to be introduced to River Pant, 
Rib and Medway sediments is via runoff from the sur-
rounding terrestrial soils, where these methanogens have 
previously been found [72]. In River Medway, Methano-
coccoides have likely been transported from the marine 
sediments via tidal mixing since this river is part of the 
macrotidal Medway Estuary [68].

We analysed the key functional genes of methy-
lotrophic methanogenesis in the metagenomics datasets 
and found that the mtsA, mtsB, mtsF and mtsH genes had 
the lowest abundance despite the Mts enzyme having 
been recognised as the key DMS methyltransferase [18, 
63, 64]. mtsD was the only mts gene found in relatively 
high abundance (0.64% compared to < 0.02%) and was 
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likely involved in DMS-dependent methanogenesis in 
the river sediments tested. On the other hand, the mtaA, 
mttB and mtbB were found at high relative abundances 
(2.1–2.3%), suggesting that DMS-degrading methano-
gens in our samples used methanol-, trimethylamine- 
or dimethylamine-methyltransferase to transfer the 
methyl group from DMS to Co-M. This is similar to our 
recent study, where, using metagenomics and metatran-
scriptomics, we showed that Methanolobus likely used 
trimethylamine and methanol methyltransferases to 
degrade DMS in Baltic Sea sediments [67]. Alternatively, 
there may be currently unknown genes or pathways of 
DMS-dependent methanogenesis.

Conclusion
This was the first study investigating methane produc-
tion via DMS degradation in river sediments with con-
trasting riverbed geologies. Our results highlight the 
previously overlooked potential of DMS as a methane 
precursor in river ecosystems particularly those with 
sandy sediments. Methanomethylovorans were the 
dominant DMS-degrading methanogens in all sampling 
sites regardless of the gravel size, highlighting a signifi-
cant role for this genus in riverine methane production. 
Hence, the contribution of DMS to methane produc-
tion in river sediments and the response of Methano-
methylovorans to changing climatic conditions warrant 
further study to better understand the methane pro-
duction pathways in rivers and predict the future global 
methane budget.
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