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Background
Since the late 1960s, theoretical ecologists have dis-
cussed that biological community compositions could 
have multiple stable states [1–3]. The concept of “mul-
tistability” has been examined in aquatic and terrestrial 
ecosystems, mainly targeting non-microbial communi-
ties [4–6]. Community structure in shallow lakes, for 
example, is known to show two discrete states depend-
ing on nutrient (phosphorus) concentrations as repre-
sented by the bistability of charophyte densities [2, 7, 
8]. Likewise, worldwide inventories of vegetation have 
shown the lack of intermediate states between forest 
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Abstract
Background Theory predicts that biological communities can have multiple stable states in terms of their species/
taxonomic compositions. The presence of such alternative stable states has been examined in classic ecological 
studies on the communities of macro-organisms (e.g., distinction between forest and savanna vegetation types). 
Nonetheless, it remains an essential challenge to extend the target of the discussion on multistability from macro-
organismal systems to highly species-rich microbial systems. Identifying alternative stable states of taxonomically 
diverse microbial communities is a crucial step for predicting and controlling microbiome processes in light of classic 
ecological studies on community stability.

Results By targeting soil microbiomes, we inferred the stability landscapes of community structure based on a 
mathematical framework of statistical physics. We compiled a dataset involving 11 archaeal, 332 bacterial, and 240 
fungal families detected from > 1,500 agroecosystem soil samples and applied the energy landscape analysis to 
estimate the stability/instability of observed taxonomic compositions. The statistical analysis suggested that both 
prokaryotic and fungal community structure could be classified into several stable states. We also found that the 
inferred alternative stable states differed greatly in their associations with crop disease prevalence in agroecosystems. 
We further inferred “tipping points”, through which transitions between alternative stable states could occur.

Conclusion Our results suggest that the structure of complex soil microbiomes can be categorized into alternative 
stable states, which potentially differ in ecosystem-level functioning. Such insights into the relationship between 
structure, stability, and functions of ecological communities will provide a basis for ecosystem restoration and the 
sustainable management of agroecosystems.
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(tree cover = ca. 80%) and savanna (tree cover = ca. 20%), 
indicating the presence of alternative stable states [9–11]. 
Importantly, these discrete vegetational types in each of 
the aquatic (high vs. low charophyte densities) and ter-
restrial (forest vs. savanna) ecosystems differ greatly in 
ecosystem-scale productivity and processes (e.g., energy 
flow through food webs) [7–11]. Thus, alternative stable 
states of biological community structure can critically 
affect ecosystem-scale properties not only in natural eco-
systems but also in ecosystems managed by humans (e.g., 
fishery, agricultural, and forestry production) [2, 4, 12, 
13]. Nonetheless, we still have limited knowledge of the 
relationship among the structure, stability, and functions 
of communities that composed of taxonomically diverse 
microbes.

While classic studies targeting freshwater and ter-
restrial biomes have explored community multistability 
based on simple characterization of community states 
(e.g., tree cover percentages), recent technical advances 
in microbial community (microbiome) research have 
come to provide general statistical frameworks for sys-
tematically evaluating biological community stability 
[14–19]. In recent years, large datasets of microbial spe-
cies/taxonomic compositions have been made avail-
able with the aid of amplicon and shotgun sequencing 
technologies, providing a basis for exploring reproduc-
ible states in microbiome community structure [17, 20, 

21]. Such high-throughput DNA sequencing studies in 
medicine, for example, have shown that human indi-
viduals can be classified into a few semi-discrete clusters 
in terms of their intestinal microbiome compositions 
[22–25]. Intriguingly, these alternative gut microbiomes 
(“enterotypes”) differ in their associations with human 
disease such as type II diabetes and Crohn’s disease [16]. 
In addition to those studies on human-associated micro-
biomes [22, 26, 27], studies on plant-associated microbi-
omes have started to reorganize our recognition of how 
multistability of phyllosphere/rhizosphere microbiome 
structure is associated with ecosystem-scale processes 
and functions [15, 28]. Because hundreds or thousands 
of community samples (i.e., samples from > 1,000 human 
individuals) are available in such animal- or plant-associ-
ated microbiome studies, it is now possible to discuss the 
potential relationship between community structure and 
ecosystem functions based on statistical signs of the pres-
ence of alternative stable states.

In theoretical ecology, stability of community states 
(taxonomic or species compositions) is often discussed 
in the framework of stability landscapes [3, 4, 29–31]. 
On the landscape representing stability/instability of 
community structure, alternative stable states (i.e., the 
bottoms of the “basins of attraction”) are split by “tip-
ping points” representing unstable equilibria [3, 4, 12, 
29] (Fig. 1). As these stable states differ in the biological 

Fig. 1 Schema of multistability of ecological communities. (A) Alternative stable states and tipping points. The structure of “stability landscapes” showing 
relationship between community states (species or taxonomic compositions) and their stability is inferred based on the energy landscape analysis. The 
“energy” of each community state is calculated with maximum entropy models as detailed in Methods. Lower energy represents a more stable commu-
nity state on a stability landscape. Transient fluctuations around alternative stable states (i.e., attractors or bottoms of basins) are assumed as probabilistic 
phenomena in the statistical approach. (B) Assembly graph. To explore numerous possible states of real ecological communities, input data are binarized 
in the energy landscape analysis. Potential transitions between community states are then considered within “assembly graphs”, in which paths between 
different species/taxonomic compositions are treated as network links. Thus, by the assembly-graph approach, the energy landscape analysis provides a 
general framework for inferring the structure of stability landscapes in empirical studies of complex microbiome datasets
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functions of constituent communities, stable and highly 
functional community states can be explored within the 
stability landscapes. With the application of a recently 
proposed mathematical approach developed based on 
statistical physics [32, 33], it is now possible to infer the 
structure of stability landscapes based on empirical data-
sets of ecological communities [29, 34, 35]. The statisti-
cal framework called “energy landscape analysis” explore 
the probabilities of community compositions within the 
“assembly graphs” [36, 37], which represent paths of pos-
sible community assembly [20, 29] (Fig.  1). Although 
hundreds or thousands of community compositional data 
points are required to apply the statistical approach [20, 
29], the energy landscape analysis offers a powerful way 
to identify key features of stable and highly functional 
microbiome states out of numerous possible combina-
tions of microbial species or taxa. Despite the potential 
for systematically profiling key community-scale prop-
erties based on massive datasets, the energy landscape 
analysis has been applied only to a few microbial commu-
nity datasets [20, 29].

We here apply the emerging statistical framework to 
soil microbiomes, which often show highest levels of 
structural diversity in nature. We compile a cropland soil 
microbiome dataset consisting of > 1,500 sampling posi-
tions across the Japan Archipelago [38]. With the massive 
dataset, we evaluate the compositional stability of pro-
karyotic and fungal communities based on the maximum 
entropy models of the energy landscape analysis [29]. 

We then examine whether the inferred alternative stable 
states of soil microbiomes can differ in their associa-
tions with crop disease prevalence. We also identify key 
microbial taxa whose abundance can be used to define 
alternative stable states with favorable and unfavorable 
ecosystem functions. The results of the energy landscape 
analysis are further used to infer tipping points splitting 
the basins of inferred alternative stable states. Overall, 
this study illustrates how we can integrate the informa-
tion of community structure, stability, and functions 
based on a statistical platform commonly applicable to 
diverse microbial and macro-organismal communities. 
Such insights will help us build practical frameworks 
for shifting ecological communities from unfavorable to 
favorable states in the contexts of conservation biology 
and sustainable agriculture.

Methods
Dataset compilation
We compiled a publicly available dataset of cropland 
soil microbiomes (DDBJ accession: DRA015491; Fig.  2) 
with its metadata of the samples [38]. In the previous 
study reporting the data [38], 2,903 bulk soil samples col-
lected from the field of 19 crop plant species (apple, broc-
coli, cabbage, celery, Chinese cabbage, eggplant, ginger, 
komatsuna, lettuce, onion, potato, radish, rice, satsuma 
mandarin, soybean, spinach, strawberry, sweet corn, 
tomato) across the Japan Archipelago from January 23, 
2006 to July 28, 2014 (latitudes of the sampling positions: 

Fig. 2 Community structure of the source data. The family-level compositions of prokaryotes (A) and fungi (B) are shown based on the source dataset 
[38]. The soil samples from which DNA sequence data were unavailable for either prokaryotic 16 S rRNA or fungal ITS regions are indicated as blanks. The 
percentages of the variance explained by the PCoA1 or PCoA2 axis of community structure are shown in parentheses. See Additional file 1: Fig. S1 for 
community compositions at the order and genus levels
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26.1–42.8 °N) were subjected to the amplicon sequenc-
ing analysis (i.e., sequencing of PCR-amplified DNA 
fragments) of the prokaryotic 16 S rRNA region and the 
fungal internal transcribed spacer 1 (ITS1) region [38]. 
The information of dry soil pH, electrical conductivity, 
carbon/nitrogen (C/N) ratio, and available phosphorous 
concentration was available for 2,830, 2,610, 2,346, and 
2,249 samples, respectively. Likewise, the information 
of crop plant disease (the percentage of diseased plants 
or disease severity index [39]) was available for 1,471 
samples [38]. The plant pathogens surveyed were Colle-
totrichum gloeosporioides on the strawberry, Fusarium 
oxysporum on the celery, the lettuce, the strawberry, and 
the tomato, Phytophthora sojae on the soybean, Plasmo-
diophora brassicae on Cruciferae plants, Pyrenochaeta 
lycopersici on the tomato, Pythium myriotylum on the 
ginger, Ralstonia solanacearum on the eggplant and the 
tomato, and Verticillium spp. on Chinese cabbage [38]. 
After a series of quality filtering, prokaryotic and fun-
gal community data were available for 2,318 and 2,186 
samples, respectively. In total, 579 archaeal amplicon 
sequence variants (ASVs) representing 11 families, 26,640 
bacterial ASVs representing 332 families, and 6,306 fun-
gal ASVs representing 240 families were detected [38] 
(Fig. 2; Additional file 1: Fig. S1).

Community structure along environmental gradients
We first inspected how prokaryotic and fungal commu-
nity structure varied along environmental gradients. For 
each data matrix representing the family-level compo-
sitions of prokaryotes or fungi, a principal coordinate 
analysis (PCoA) was performed based on Bray-Curtis 
β-diversity. The PCoA1 and PCoA2 scores were then 
plotted, respectively, along the gradient of each soil envi-
ronmental factor. In total, 1,771 and 1,664 samples for 
which the information of both community structure and 
all the four environmental variables was available were 
included in the analyses of prokaryotes and fungi, respec-
tively. For each plot representing relationship between 
community structure and a soil environmental variable, 
the density of data points was visualized with the ggplot2 
3.3.6 package [40] of R v.4.1.2 [41].

Energy landscape analysis
We examined the stability landscape of soil microbiome 
structure based on the framework of an energy land-
scape analysis [20, 29, 32] (tutorials and codes of energy 
landscape analyses are available at  h t t p  s : /  / g i t  h u  b . c  o m 
/  k e c o  s z  / r E L A). In the framework, the term “energy” is 
defined by the following equations based on an approach 
of statistical physics [29, 32]. Within the “assembly 
graphs” representing paths of community dynamics 
[36, 37], probabilities of observing specific community 

compositions can be explored as detailed previously [29]. 
In brief, probabilities of community states p

(
−→σ (k)

)
 are 

given by
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state vector of k-th community state and S is the total 
number of taxa (e.g., ASVs, species, genera, or families) 
examined. ϵ = (ϵ 1, ϵ 2, . . . , ϵ M ) is an array of continu-
ous values representing environmental factors (e.g., soil 
pH and electrical conductivity) and M is the total num-
ber of environmental parameters. σ

(k)
i  is a binary vari-

able that represents presence (1) or absence (0) of taxon 
i: i.e., there are a total of 2S  community states. As the 
exploration of the 2S  community states were compu-
tationally intensive, we coded community states at the 
family-level taxonomic compositions. Specifically, for 
each sample, families whose relative abundance exceeds 
a certain threshold value (threshold for binarization) 
were coded as 1, while the remaining minor families were 
coded as 0. Subsequently, families whose occurrence 
ratios (i.e., the proportions of samples in which target 
families were coded as 1) were less than a certain thresh-
old (occurrence threshold) were excluded from the data-
set. Likewise, families that appeared in almost all samples 
(1– occurrence threshold) were excluded. Note that 
without such thinning of input data, the dimensions of 
community states are too high to be explored even using 
supercomputers. Therefore, exclusion of the taxa that 
contribute little to the classification of community states 
(i.e., taxa appearing only in a small fraction of samples 
or those appearing in most samples) is inevitable in the 
energy landscape analysis. Through intensive preliminary 
computational runs with various combinations of bina-
rization and occurrence thresholds, we found that the 
number of taxa (S) should be kept less than 65 as detailed 
in the next subsection.

When input community matrix is defined, the energy 
of the community state −→σ (k) is given by the extended 
pairwise maximum entropy model:
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where hi represents the net effect of implicit abiotic 
factors, by which i-th taxon is more likely to present (hi 
> 0) or not (hi < 0), gij  represents the effect of the i-th 
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observed environmental factor, and Jij  represents a co-
occurrence pattern of i-th and j-th taxa. Since the loga-
rithm of the probability of a community state is inversely 
proportional to E

(
−→σ (k)

)
, a community state having 

lower E is more frequently observed. To consider dynam-
ics on an assembly graph defined as a network whose 2S  
nodes represent possible community states and the edges 
represents transition path between them (two commu-
nity states are adjacent only if they have the opposite 
presence/absence status for just one species), we assigned 
energy to nodes with the above equation, and so imposed 
the directionality in state transitions. Then, by using the 
steepest descent algorithm [29], we identified nodes hav-
ing the lowest energy compared to all its neighbors within 
the weighted network, and determined their basins of 
attraction [29, 31]. These community states whose energy 
was lower than that of all adjacent community states rep-
resent alternative stable states (attractors), around which 
community states are expected to show transient fluctua-
tions due to demographic stochasticity as considered in 
the statistical framework [20, 29] (Fig. 1). Soil pH, elec-
trical conductivity, C/N ratio, and available phosphorous 
concentration were included as environmental variables 
in the model after normalization within the ranges from 
0 to 1.

Energy landscape structure
The energy landscapes of community structure were 
inferred, respectively, for three types of datasets, namely, 
the prokaryotic community matrix, the fungal matrix, 
and the matrix including both prokaryotes and fungi. As 
mentioned above, various combinations of binarization 
and occurrence thresholds were examined to check the 
reproducibility of the results. In addition to the energy 
landscape analysis based on the above-mentioned fam-
ily-level delineation of community states, analyses based 
on community-state delineation at the order-level were 
performed. In the main body and supplementary figures 
of this study, we show the results at the following set-
tings: prokaryotes (family), binarization = 0.020, occur-
rence = 0.10; prokaryotes (order), binarization = 0.020, 
occurrence = 0.10; fungi (family), binarization = 0.001, 
occurrence = 0.05; fungi (family), binarization = 0.001, 
occurrence = 0.10; prokaryotes + fungi (family), bina-
rization = 0.030, occurrence = 0.10; prokaryotes + fungi 
(order), binarization = 0.030, occurrence = 0.10. The 
thresholds were set to keep the dimensions of the state 
space within computationally feasible ranges (S < 65) as 
mentioned above.

For each setting, the parameters of the extended pair-
wise maximum entropy model [Eq.  3] were adjusted 
to the empirical data. More precisely, the maximum 
likelihood estimates of hi, gij , and Jij  was obtained by 

a stochastic approximation method as detailed else-
where [29]. The parameters were regularized by a logis-
tic prior with location 0 and scale 2.0 (for environmental 
responses) or 0.5 (for pairwise relationships) [42]. Hyper-
parameters for the algorithm, criterion value for judg-
ing the convergence of parameters qth = 10− 5, were set 
according to a series of preliminary analyses. Based on 
the inferred maximum entropy model, we determined 
basins of attraction [31] within the energy landscape 
based on a steepest descent procedure [29]. The struc-
ture of the energy landscape was visualized by showing 
the energy of each soil sample on the two-dimensional 
surface of the community state space defined with the 
abovementioned PCoA scores. The default setting of 
environmental variables (the mean value for each of 
soil pH, electrical conductivity, C/N ratio, and available 
phosphorous concentration) was used in the energy cal-
culation. Spline smoothing of the energy landscape was 
performed with optimized penalty scores using the mgcv 
v.1.8–40 package [43] of R. For each analysis of the pro-
karyote, fungi, and prokaryote + fungi datasets, 1,771, 
1,664, and 1,474 samples for which the information of 
both community structure and all the four environmen-
tal variables was available were subjected to the analysis, 
respectively.

Associations with crop disease level
For the inferred basins of microbial community compo-
sitions, associations with crop disease prevalence were 
examined. We first constructed the list of soil samples 
whose community structure was located within each 
basin of attraction. We then evaluated the ecosystem-
scale properties of the basins using the metadata of crop 
disease symptoms [38]. Specifically, for each basin, we 
calculated the proportion of constituent soil samples 
with the lowest level of crop disease symptoms as defined 
by the following conditions: the percentage of diseased 
plants < 20 or disease severity index < 20 [38]. The alter-
native stable states representing different levels of crop 
disease prevalence were then compared in terms of taxo-
nomic compositions in order to explore microbial taxa 
that were keys to distinguish potentially disease-suppres-
sive and disease-promotive soil ecosystems.

Disconnectivity graphs
For the reconstructed energy landscape, we inferred 
“disconnectivity graphs” [29] representing how basins of 
attraction were split by tipping points (Fig.  1A). Within 
a disconnectivity graph, alternative stable states whose 
energy is much lower than the energy of connected tip-
ping points are expected to be resistant to perturbations 
(demographic stochasticity). In contrast, community 
states with small energy gaps to tipping points may be 
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shifted from current basins to adjacent basins with even 
small perturbations.

Results
Community structure along environmental gradients
On each plot showing community compositions (PCoA1 
or PCoA2 scores) along a soil environmental gradient 
(Fig.  3), multiple clusters of data points were observed 
for both prokaryotes and fungi (Additional files 2–3: Figs. 
S2-3). For example, two high-density regions of prokary-
otic community data points were observed for the PCoA1 
axis when pH = 6.0 (Fig. 3). Likewise, fungal community 

PCoA1 scores showed a bimodal pattern around pH = 6.7 
(Fig. 3).

Energy landscape structure
The energy landscape of the family-level prokaryotic 
data included several major basins differing remark-
ably in associations with the prevalence of crop plant 
disease (Fig. 4). Specifically, among soil samples located 
within the basin represented by the alternative stable 
state 0IK1G2, 59.6% were associated with the low-
est plant-disease level. Meanwhile, the proportion was 
only 10.7% for another basin (LQWZ02; Fig.  4C-D). 

Fig. 3 Community structure along environmental gradients. The scores representing prokaryotic/fungal community compositions (PCoA1 and PCoA2 
scores) are shown along each of the soil environmental factors (pH, electrical conductivity, C/N ratio, and available phosphorous concentration). The 
density plots representing 1,771 prokaryotic (left) and 1,664 fungal community samples are shown. See Additional files 2–3: Figs. S2-3 for full the scatter 
plots showing the data points
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The presence of basins differing greatly in their associa-
tions with plant-disease levels was inferred as well at the 
order-level analysis of the prokaryotic data (Additional 
file 4: Fig. S4). Such variation in crop disease prevalence 
among inferred basins was observed also for the family-
level analysis of fungal community structure (Fig. 5). Spe-
cifically, while 57.9% of samples belonging to the basin 
7QH9moTf8Xa, but none of the samples belonging to 
the basin 68C0849W020, were associated with the lowest 
plant-disease level (Fig. 5D). Meanwhile, such difference 
in associations with disease prevalence was moderate in 
an analysis in which a smaller number of fungal families 
were examined to define community states (Additional 
file 5: Fig. S5). The presence of multiple basins, which dif-
fered in associations with crop-disease prevalence, was 
suggested even when prokaryotic and fungal community 

data were simultaneously analyzed (Additional files 6–7: 
Figs. S6-7).

Associations with crop disease level
In an analysis of the prokaryotic community structure, 
19 families were keys to distinguish alternative stable 
states (or their representing basins) differing in associa-
tions with crop-disease prevalence (Fig.  4D). The pres-
ence of Pyrinomonadaceae and Vicinamibacteraceae, for 
example, was unique to the alternative stable state with 
the highest proportion of samples showing the lowest 
plant-disease level (Fig.  4D). Likewise, in an analysis of 
the fungal community structure, the alternative stable 
state associated closely with the lowest plant-disease 
prevalence (7QH9moTf8Xa) was defined by the presence 
of several families such as Basidiobolaceae, Cordycipi-
taceae, and Gelatinodiscaceae (Fig. 5D). The exploration 

Fig. 4 Energy landscape of prokaryotic communities. (A) Inferred energy landscape of family-level prokaryotic community structure (threshold for bina-
rization = 0.020; occurrence threshold = 0.10; S = 35). The surface of energy levels was reconstructed across the PCoA space of fungal community structure 
(community PCoA1 and PCoA2 scores in Additional file2: Fig. S2) based on spline smoothing. Community states with lower energy are inferred to be more 
stable. (B) Landscape of crop disease prevalence. Across the PCoA space of prokaryotic compositions, the proportion of samples with disease severity 
index < 20 is shown based on spline smoothing. (C) Community data points on the energy landscape. The axis of “energy of community state” is more 
expanded than that in panel A in order to cover the range of samples. Data points (samples) indicated by the same color belong to the same basins of 
attraction, which are represented by IDs of the alternative stable states, whose energy is lower than that of any adjacent community states (i.e., bottoms of 
basins). (D) Key taxa whose abundance represent basins. In the upper panel, the mean proportion of soil samples with the minimum level of plant (crop) 
disease symptoms (the percentage of diseased plants < 20 or disease severity index < 20) is shown for each basin. The lower panel indicates the key taxa 
whose abundance characterizes difference among alternative stable states
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of microbial taxa keys to distinguish basins with differ-
ent ecosystem-level functions can be performed at other 
taxonomic levels (e.g., order-level; Additional files 4 and 
7: Figs. S4 and S7).

Disconnectivity graphs
Within the energy landscape of the family-level analy-
sis of prokaryotes (Fig.  4), both the basins associated 
with the least-diseased (OIK1G2) and most-diseased 
(N21H04) crop status were the deepest among the 
inferred basins (i.e., showing the largest energy gaps from 
the bottom to tipping points; Fig.  6A-B). In the family-
level analysis of fungi, the basin associated with the least-
diseased status (7QH9moTf8Xa) was the deepest, while 
the other basin representing the most-diseased status 
(68C0849W020) was the shallowest (Fig. 6C).

Discussion
We have estimated the stability landscape structure 
of complex soil microbiomes with the aid of a statisti-
cal framework commonly applicable to diverse types of 
biological communities. The energy landscape analy-
sis allows systematic inference of community stability 
by integrating taxon-rich community datasets with the 
background information of multiple environmental fac-
tors [29, 34, 35]. While classic studies on community 
multistability have discussed ecological processes span-
ning a few intuitively distinguishable community states 
(high/low tree cover in forest–savanna transitions [9–11] 
or macrophyte-/phytoplankton-dominated state in shal-
low lakes [4, 8]), it is now made possible to define alterna-
tive stable states based on high-dimensional community 
datasets involving hundreds of species/taxa [16, 20–22, 
44]. Such extension of discussion from simple to complex 

Fig. 5 Energy landscape of fungal communities. (A) Inferred energy landscape of family-level fungal community structure (threshold for binariza-
tion = 0.001; occurrence threshold = 0.05; S = 62). The surface of energy levels was reconstructed across the PCoA space of fungal community structure 
(community PCoA1 and PCoA2 scores in Additional file 3: Fig. S3) based on spline smoothing. Community states with lower energy are inferred to be 
more stable. (B) Landscape of crop disease prevalence. Across the PCoA space of prokaryotic compositions, the proportion of samples with disease sever-
ity index < 20 is shown based on spline smoothing. (C) Community data points on the energy landscape. The axis of “energy of community state” is more 
expanded than that in panel A in order to cover the range of samples. Data points (samples) indicated by the same color belong to the same basins of 
attraction, which are represented by the IDs of alternative stable states, whose energy is lower than that of any adjacent community states (i.e., bottoms of 
basins). (D) Key taxa whose abundance represent basins. In the upper panel, the mean proportion of soil samples with the minimum level of plant (crop) 
disease symptoms (the percentage of diseased plants < 20 or disease severity index < 20) is shown for each basin. The lower panel indicates the key taxa 
whose abundance characterizes difference among the alternative stable states
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community characteristics is expected to deepen our 
understanding of alternative stable states in diverse 
microbial and macro-organismal systems.

Despite numerous potential compositions ( 2S  com-
munity states; S is the number of considered species/
taxa), the prokaryotic and fungal community states were 
grouped into small numbers of basins within the energy 
(stability) landscapes (Figs.  4 and 5). This result sug-
gests that soil microbiome structure can remain within 
local regions (basins) even after demographic fluctua-
tions (Fig.  1A). In other words, once trapped in a basin 
of attraction, large shifts in community structure would 
not occur without demographic perturbations whose 
strength exceed certain thresholds [1–3, 31]. Impor-
tantly, the threshold strength of perturbations is esti-
mated as the energy gap between the bottoms of basins 
and tipping points [29] (Fig. 6A). Furthermore, potential 
paths of community structural transitions can be quan-
titatively inferred as illustrated in disconnectivity graphs 
[29] (Fig. 6B-C). Such statistical framework of quantita-
tive science will entail novel opportunities for predict-
ing abrupt shifts between alternative stable states in the 

era of high-throughput DNA sequencing, which provide 
massive data of ecological community compositions.

Among potential processes or mechanisms underly-
ing the multistability of community structure, histori-
cal contingency is of particular interest [45]. In the local 
assembly of microbial communities, early colonizers 
or residents can prevent the settlement of followers by 
constructing physical barriers (e.g., biofilms and myce-
lia) [45–49] or emitting antibiotics [50, 51]. In addition 
to those antagonistic effects on late colonizers, webs of 
mutualistic or commensalistic interactions within the 
microbiomes of early colonizers [52–54] would influ-
ence community dynamics. Due to such “priority effects” 
[45], bacterial and fungal community compositions may 
persist within limited ranges of community states with-
out substantial perturbations. Given that abilities to form 
physical or chemical barriers can differ greatly among 
microbial species/taxa [47, 50, 51], such variation in con-
stituent species’ priority effects may underly the observed 
variation in the depth of basins (Fig. 6B-C).

The inference of stability landscape structure pro-
vided an opportunity for evaluating relationship between 

Fig. 6 Disconnectivity graphs of the energy landscapes. (A) Schema of a disconnectivity graph. The energy of the “tipping points” splitting basins of at-
traction are presented across the axis of 2S possible community states, where S denotes the number of the species or taxa examined. The energy of each 
alternative stable states is shown. (B) Tipping points and basins on the energy landscape of prokaryotes. The major basins of attraction with ≥ 10 samples 
with plant-disease information are highlighted with the colors defined in Fig. 4. (C) Tipping points and basins on the energy landscape of fungi. The major 
basins of attraction with ≥ 10 samples with plant-disease information are highlighted with the colors defined in Fig. 5
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community stability and ecosystem-scale functions. The 
alternative stable states of prokaryotic/fungal community 
structure differed considerably in associations with crop 
disease prevalence (Fig.  5), suggesting the presence of 
“stable and favorable” and “stable but unfavorable” states 
of microbiomes [55–57] in terms of agricultural produc-
tivity. This finding adds an important dimension of dis-
cussion on the use of microbes in agriculture. Beyond 
investigations on single species/strains of microbes, 
microbiome studies have explored sets of microbes that 
collectively maximize biological functions [15, 58–60]. 
In particular, experimental studies on “synthetic” com-
munities have reorganized our knowledge of microbiome 
functions [58–60]. Nonetheless, such microbial functions 
cannot be realized in real agroecosystems if the synthe-
sized or designed microbiome compositions are vulner-
able to biotic and abiotic environmental changes in the 
wild [61]. Thus, in addition to functional properties, 
compositional stability is the key to manage microbiomes 
in agroecosystems [58, 62, 63].

In our analysis across the Japan Archipelago, prokary-
otic and fungal taxa keys to distinguish least-diseased 
and severely-diseased states of soil microbiomes were 
highlighted (Figs. 4 and 5). Among them, Basidiobolaceae 
and Cordycipitaceae are of particular interest because 
they include many species potentially utilized as biologi-
cal control agents for suppressing pest insects [64, 65]. 
Gelatinodiscaceae is another fungal taxon playing poten-
tially important roles as symbionts of plants [66]. These 
results illuminate the hypothesis that plant disease could 
be suppressed under the coexistence of multiple prokary-
otic and fungal taxa with favorable ecosystem functions 
[15, 67]. Thus, statistical analyses of stability landscapes 
allow the exploration of key species or taxa [68, 69], 
whose management could result in transitions from unfa-
vorable ecosystem states to favorable ones [2, 4, 12, 13]. 
Given that most prokaryotic and fungal families high-
lighted in our analysis have cosmopolitan distributions, a 
next crucial step is to test whether the alternative stable 
states defined across the Japan Archipelago can be used 
to categorize disease-suppressive and disease-susceptible 
microbiomes in other regions on the globe.

Although the energy landscape analysis enhances our 
understanding of community stability and functions, its 
results should be interpreted with caution. First, given 
that classic ecological studies tended to examine com-
munity multistability with system-specific simple crite-
ria (e.g., high/low tree cover [9–11]), special care should 
be taken when we extend the existing theoretical litera-
ture to the studies on species-rich (high-dimensional) 
community data [44]. In other words, unambiguous and 
broadly applicable criteria based on statistical evaluation 
are the prerequisite for comparative analyses of commu-
nity multistability. Although we applied a straightforward 

statistical definition of alternative stable states [29] 
(Fig. 1) by taking into account classic theoretical concepts 
[1–3, 31], continuous methodological improvements 
should be explored towards further comprehensive 
understanding. Second, our analysis on hyper-diverse 
soil microbiomes incurred substantial computational 
costs, forcing us to limit the energy landscape analysis to 
family-level input data. Further improvements of codes 
are necessary for inferring stability landscapes at genus-, 
species-, or strain-level analyses. Third, it should be 
acknowledged that detailed discussion on ecological pro-
cesses require time-series datasets [70–72]. Because our 
present data lacked the information of temporal changes 
in community structure, we are unable to discuss the 
frequency and pace of community structural transitions 
between alternative stable states. Monitoring of microbi-
ome compositions [19, 21, 27] is necessary for filling the 
gap between theoretical and empirical studies [73].

Conclusion
As shown in this study, the relationship among commu-
nity structure, stability, and functions can be overviewed 
based on a statistical framework of the energy landscape 
analysis. The application of the analysis to a large DNA-
sequencing-based dataset suggested that agroecosystem 
soil microbiomes could be classified into several compo-
sitional groups representing alternative stable states. We 
then found that the inferred alternative stable states dif-
fered greatly in their associations with ecosystem-level 
properties (crop-disease levels). The energy landscape 
analysis then allowed us to consider potential paths of 
transitions between the alternative stable states. Con-
sequently, the statistical-physics-based approach is 
expected to fill the gap between classic ecological theory 
and empirical microbiome research by extending the 
targets of discussion on the multistability of ecological 
communities.

The energy landscape framework of multistability 
analysis is readily applicable to a wide range of microbi-
ome datasets. Application to human microbiome data is 
of particular interest in terms of the confirmation of the 
existence of multiple basins of attraction [25]. In addition, 
insights into the key microbial species/taxa that would 
play key roles in the transitions from disease-associated 
microbiome states to healthy ones will open new direc-
tions of microbiome therapy. Furthermore, time-series 
analyses of community dynamics on stability landscapes 
will allow us to forecast transitions into unfavorable 
community states (e.g., dysbiosis [20, 73, 74]). In line 
with such proof-of-concept research targeting human 
microbiomes, the application of the statistical frame-
work to environmental microbiome data will deepen our 
understanding of the multistability of aquatic and ter-
restrial ecosystems. Meanwhile, the current version of 
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the energy landscape analysis has not been designed to 
clarify causality among environmental conditions, com-
munity structure, and ecosystem-scale properties. In 
general, causality between variables cannot be detected 
from observational data based on standard statistical 
approaches. Thus, further methodological improvements 
are required to build a general platform for exploring key 
driving factors of microbiome dynamics. Along with such 
extensions of observational approach, experimental stud-
ies controlling key biotic or abiotic environmental param-
eters [6] will promote both basic and applied sciences of 
ecosystem functions, fueling research on ecosystem res-
toration and sustainable agroecosystem management.
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