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Abstract
Background  Plasmids are key in creating a dynamic reservoir of genetic diversity, yet their impact on Earth’s 
continental subsurface—an important microbial reservoir—remains unresolved. We analyzed 32 metagenomic 
samples from six groundwater wells within a hillslope aquifer system to assess the genetic and functional diversity of 
plasmids and to evaluate the role of these plasmids in horizontal gene transfer (HGT).

Results  Our results revealed 4,609 non-redundant mobile genetic elements (MGEs), with 14% (664) confidently 
classified as plasmids. These plasmids displayed well-specific populations, with fewer than 15% shared across wells. 
Plasmids were linked to diverse microbial phyla, including Pseudomonadota (42.17%), Nitrospirota (3.31%), Candidate 
Phyla Radiation (CPR) bacteria (2.56%), and Omnitrophota (2.11%). The presence of plasmids in the dominant CPR 
bacteria is significant, as this group remains underexplored in this context. Plasmid composition strongly correlated 
with well-specific microbial communities, suggesting local selection pressures. Functional analyses highlighted that 
conjugative plasmids carry genes crucial for metabolic processes, such as cobalamin biosynthesis and hydrocarbon 
degradation. Importantly, we found no evidence of high confidence emerging antibiotic resistance genes, contrasting 
with findings from sewage and polluted groundwater.

Conclusions  Overall, our study emphasizes the diversity, composition, and eco-evolutionary role of plasmids in 
the groundwater microbiome. The absence of known antibiotic resistance genes highlights the need to preserve 
groundwater in its pristine state to safeguard its unique genetic and functional landscape.
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Background
Microbial cells contain mobile vectors that carry unique 
and adaptative genetic material from one cell to another 
[1]. This pool of mobile genetic elements (MGEs) is 
called the cell mobilome [2, 3]. Among these MGEs, plas-
mids stand out as self-replicating DNA molecules that 
play a critical role in horizontal gene transfer (HGT) and 
microbial evolution. Plasmids can be acquired by the 
host through various cellular mechanisms such as con-
jugation, transduction, transformation, and vesiduction, 
i.e. DNA transfer by extracellular vesicles [4]. They are 
often referred to as part of the accessory genome and as 
selfish [5]. Plasmids make up a large part of the genetic 
repertoire in some microbial cells (around 30% of the cell 
genomic content) [6, 7] and are considered part of the 
core genome. They co-evolve with host chromosomes, 
becoming essential for adaptation, stress response and 
symbiotic associations (e.g., microbe-plant interactions) 
[8–10]. Plasmids mediate the HGT between mostly phy-
logenetically closely related cells, although they can suc-
cessfully circumvent taxonomic boundaries including 
broader taxonomic ranks such as order, class, and phy-
lum [11]. Adaptive plasmids allow microbes to thrive 
and increase their ecological niche breadth [5, 12]. In the 
absence of a selective advantage, plasmids may be lost by 
microbial cells due to the metabolic burden they impose 
during replication. Plasmids can also persist across mul-
tiple generations within complex microbial communities, 
even under varying selective forces that should lead to 
their loss, a situation referred to as the “plasmid paradox“ 
[5, 13].

Depending on the mechanism of mobilization through 
cells, plasmids fall into three general categories: conju-
gative, mobilizable, and non-mobilizable. Conjugative 
plasmids contain all the necessary machinery for self-
transfer, including the mating-pair formation (MPF) sys-
tem required for conjugation. In contrast, mobilizable 
plasmids lack the MPF system but can be transferred by 
hitchhiking on the MPF of co-occurring conjugative plas-
mids. Non-mobilizable plasmids lack the genes for self-
transfer and are moved between cells through alternative 
mechanisms such as natural transformation, transduc-
tion, or membrane vesicles [1, 14].

Plasmids are ubiquitous across nearly all environments 
on Earth, hosted by a diverse range of microbes, includ-
ing archaea (at least 4 phyla and 7 classes) and bacteria 
(at least 45 phyla and 94 classes) [15, 16]. They have also 
been identified in various eukaryotic cells [17]. In bacte-
ria, plasmids have been mostly associated with the phyla 
Pseudomonadota (formerly Proteobacteria), Bacillota 
(formerly Firmicutes), Bacteroidota, and Actinobacteri-
ota. In certain microbial growth forms, such as biofilms, 
the availability and mobility of plasmids between cells 
are enhanced due to the high frequency of cell-cell 

interactions, which are facilitated by the elevated cell 
density (up to 1011 cells/mL), and the structured spatial 
organization of the community [18–21]. High cell density 
environments are recognized as hotspots of enhanced 
HGT, primarily through conjugation, and less likely via 
transformation and transduction [18, 22, 23]. These envi-
ronments also foster cooperation and competition among 
bacteria [24–26]. In fact, most pioneering studies on the 
plasmidome—the total plasmid content in a given envi-
ronment—have focused on environments with high cell 
densities, such as the rumen and the human gut [27–29], 
as well as human-impacted settings such as wastewater 
[30]. These studies often emphasize drug resistance genes 
and frequently associate findings with Pseudomonadota. 
While there is a growing interest in naturally occurring 
plasmids within aquatic environments such as oceans 
and groundwater, which typically exhibit lower microbial 
cell densities [31, 32], the plasmidome composition in 
these settings remains largely understudied [33].

Groundwater microbiomes constitute a significant 
fraction Earth´s microbial life, encompassing an esti-
mated 5 × 1027 cells globally, which accounts for approxi-
mately 10% of the planet´s total microbial biomass [21, 
34]. This underscores the pivotal role of groundwater 
ecosystems in global biogeochemical cycles [35–38]. 
Despite their importance, our understanding of genetic 
elements such as plasmids within these environment 
remains limited, particularly in abundant yet underex-
plored taxa such as nanoarchaea and the ultra-small 
Candidate Phyla Radiation (CPR) bacteria [39, 40]. Plas-
mids are known to play vital roles in microbial adapta-
tion, influencing metabolism, gene flow, and cooperation 
through shared resources such as public goods. How-
ever, their prevalence, diversity, and functional roles in 
groundwater ecosystems are still poorly understood. 
These genetic elements may also serve as sensitive indica-
tors of environmental threats, such as anthropogenic pol-
lution. For instance, plasmids from groundwater exposed 
to metal waste have been found to carry genes critical for 
mercury detoxification [41–43], highlighting their adap-
tive significance.

We hypothesize that groundwater microbiomes act as 
reservoirs for novel and uncharacterized plasmids, har-
boring genes that are essential for maintaining subsurface 
biogeochemical processes. Investigating these plasmids 
at deeper genomic and functional levels is crucial for 
unraveling their roles in ecosystem dynamics and their 
potential to address emerging environmental challenges.

In this study, we analyzed a collection of short-read 
metagenomic sequencing samples (n = 32, with data 
ranging from 16.4 to 22.1 Gbp) from six groundwater 
wells, using sequential filtration (0.1 μm and 0.2 μm) to 
capture microbial diversity. This dataset was comple-
mented by a previously published metatranscriptomic 
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dataset (n = 17) derived from the same wells, except for 
H14 [36, 39, 44]. All samples were obtained from a pris-
tine groundwater system within the Hainich Critical 
Zone Exploratory (Thuringia, Germany), where CPR 
bacteria dominate the microbial community, comprising 
23–79% of the total microbiome [36, 39, 44]. By integrat-
ing short-read metagenomic data with multiple plasmid 
prediction tools, we identified 4,609 MGEs, 664 of which 
were confidently classified as plasmids. These MGEs 
were taxonomically linked to microbial hosts using both 
sequence alignment tools (e.g., BLAST) and a CRISPR-
based detection approach [45, 46]. While this combi-
nation of tools provides valuable insights, the inherent 
complexity of plasmid genomes, coupled with the limi-
tations of short-read sequencing and current prediction 
algorithms, can constrain the completeness of plasmid 
recovery and the accuracy of host assignments. These 
challenges underscore the importance of advancing 
methodological approaches—such as the integration of 
long-read sequencing technologies, optimized plasmid 
DNA extraction protocols, and improved host-mapping 
techniques—to more comprehensively resolve the diver-
sity and ecological roles of MGEs [47, 48]. We aimed to 
(i) explore the diversity of mobilome, with a particular 
focus on plasmids, and their genetic and functional com-
position, (ii) characterize the potential host of plasmids, 
shedding light on their distribution across phylogenetic 
groups, (iii) investigate correlations between micro-
bial composition and the plasmid pool across sampling 
sites, and (iv) reveal the role of plasmids in mediating the 
transfer of genetic information, including public goods 
and antibiotic resistance genes. This work provides valu-
able insights into the genetic landscape of groundwater 
microbiomes, emphasizing the ecological and evolution-
ary significance of plasmids in these systems.

Methods
Sampling site description and metagenomic data 
collection
Mobile genetic elements (MGEs), specifically plasmids, 
were characterized in metagenomes (n = 32) obtained 
from groundwater collected along six selected wells dis-
tributed in a hillslope fractured carbonate aquifer system 
of the Hainich Critical Zone Exploratory (CZE) located 
in Thuringia, Germany, in November 2018 and January 
2019. The present study focuses on samples obtained 
from six out of 10 groundwater wells (H14, H32, H41, 
H43, H51, H52), which represent a diverse range of envi-
ronmental conditions, including oxic and anoxic zones, 
as well as limestone-dominated and mudstone-domi-
nated aquifer assemblages [49, 50]. Wells H14, H32, H41, 
and H51 exhibit oxic conditions, whereas wells H43 and 
H52 have suboxic or anoxic conditions. More site char-
acteristics and sampling details are described elsewhere 

[36, 39]. In short, between 50 and 100 L of groundwater 
were sequentially filtered in January 2019 from each well 
through 0.2 μm filters and 0.1 μm filters per triplicate to 
capture the small sized bacteria and archaea, except for 
H32, which had only one replicate of the 0.2 μm fraction. 
A high particle load in the H32 sample caused early filter 
clogging, preventing further filtration. Thus, we included 
an additional sample from the 0.2 μm fraction, collected 
during the November 2018 sampling campaign, for 
downstream analyses [36]. DNA extractions were per-
formed using a phenol-chloroform method. A total of 32 
metagenomes were sequenced using Illumina NextSeq 
500 system and paired-end library (2 × 150 bp) [36, 39].

Metagenome and metatranscriptomic data characteristics
The metagenome sequences were quality-filtered as 
described in two previous studies (European Nucleotide 
Archive (ENA) projects: PRJEB36505 and PRJEB36523) 
[36, 39]. The quality-filtered reads were used for metage-
nomic assemblies with metaSPAdes (version 3.12) [51] 
and subsequent analyses. An additional metatranscrip-
tome dataset (n = 17) collected in August and November 
2015 published under the ENA project PRJEB28738 was 
used to validate the presence of genes in MGEs under 
transcription [44]. Groundwater samples were collected 
from the same wells, except for H14, which was not 
included in this earlier sampling campaign.

Prediction of MGEs, particularly plasmids
To investigate MGEs classified mainly as plasmids, we 
used three approaches developed for plasmid identifi-
cation. First, we used the SCAPP (Sequence Contents-
Aware Plasmid Peeler) (version 0.1.1) [52] tool with 
metaSPAdes assembly graph and used as -k/–max_kmer 
value 55, keeping the other parameters as default [51]. 
The alignment of the reads to the assembly graph was 
performed using SAMtools (version 1.15.1) [53]. The 
SCAPP approach was successfully applied to all the wells, 
however, due to the high number of nodes per assembly, 
SCAPP was not applied to several sample replicates (7 
out of 32). The second approach was to use PlasX [54], 
a tool that uses machine learning to classify plasmids 
in metagenome-assembled sequences based on genetic 
architecture. Sequences with a score greater than or 
equal to 0.90 were considered as high confidence plas-
mids. The preprocessed fasta files used as input in PlasX 
were processed using Anvi’o (version 7.1) [55]. Finally, the 
third approach consisted of building a co-assembly of the 
metagenome replicas using MEGAHIT (k-mer = 77) (ver-
sion 1.2.9) [56] and the program DomCycle with default 
parameters [57]. The MEGAHIT co-assemblies in fasta 
format were converted to fastg using the contig2fastg 
function implemented in MEGAHIT [56]. For each co-
assembly, the read mapping of their corresponding reads 
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was performed using BWA-MEM (version 0.7.17) with 
default parameters [58]. DomCycle was executed with 
default parameters and matching co-assembly k-mer.

For each groundwater sample, the contigs recovered 
using the three approaches were merged and derepli-
cated with the program MobMess [54], testing complete 
and fragmented sequences, using values of similarity 
and coverage of the smaller plasmid ≥ 90%. This program 
selects one representative sequence per cluster with the 
highest global sequence identity. Clustering up to 95% 
similarity gave similar results (differed by only for 2 clus-
ters). After dereplication with MobMess, the MGEs from 
all the samples were pooled, dereplicated, and used for 
further comparative genomic analyses. Additionally, we 
used dRep [59] 99% identity for secondary clustering, and 
approximately 95% of the dereplicated sequences identi-
fied with MobMess were also identified with dRep. Non-
redundant MGE-DNA contig sequences are available on ​
h​t​t​p​​s​:​/​​/​z​e​n​​o​d​​o​.​o​​r​g​/​​r​e​c​o​​r​d​​s​/​1​4​5​0​0​0​1​4.

Reclassifying MGEs, mainly plasmids using protein 
sequence annotation and virus prediction tools
Although the prediction of MGEs was mostly done with 
bioinformatics tools designed to identify plasmids, it is 
important to note that some tools, such as SCAPP, can 
identify circular MGEs that are distinct from plasmids 
[43]. So, additional steps, such as protein sequence anno-
tation, were required to infer whether plasmids were 
classified as other MGEs. Thus, we obtain a more conser-
vative prediction of the plasmid sequences.

First, MGEs were classified into three types: plasmids, 
phages, and other mobile elements based on the protein 
sequence annotation using Pfam, COGs, KEGG, and 
eggNOG databases [60–63]. One MGE was defined as a 
plasmid, phage, and unassigned MGE (uMGE) based on 
the protein terms defined by Shalon et al., 2022 and Yu et 
al., 2024 [54, 57].

Briefly, if the MGEs contain genes annotated as plas-
mid, conjugation, mobilization (mobA, mobB, mobC, 
mobD, and mobE), and partition system (parA and parB), 
they were classified as plasmids. If the MGEs contain at 
least one functional protein annotation with the follow-
ing terms: capsid, phage, tail, head, tape, antitermination, 
virus, bacteriophage, sipho, baseplate, T4-like, and myo-
vir, they were classified as phages. MGEs without match 
with the terms described above but with gene annota-
tions such as transposases, transposons, toxin-antitoxin 
(TA) systems, excision, integrase, relaxase, recombi-
nation, segregation, extrachromosomal, mobilization, 
and partitioning were classified as unassigned MGEs 
(uMGEs).

To exclude the presence of phages that could be mis-
classified as plasmids, we additionally used the tools Vir-
Sorter2 (version 2.0.9) [64], VIBRANT(version 1.2.1) [65] 

and DeepVirFinder (version 1.0) [66]. VirSorter2 retained 
the viral sequences with a quality score of 0.9 (version 
2.0.9). DeepVirFinder (version 1.0) only considered those 
sequences with scores equal to 0.9 or more and qvalues 
of 0.05 or less. The program geNomad (version 1.5.1) 
[67] with conservative parameters was used to complete 
the classification of plasmids based on the conjugative 
genes and viral sequences. Altogether, the results from 
VirSorter2,, DeepVirFinder, and geNomad were con-
sidered to classify viral sequences in our MGE dataset. 
Finally, using CONJscan database [68] as is implemented 
in geNomad and MacSyFinder (version 2.0), we identified 
plasmids containing relaxase mobilization (MOB) genes 
[69] (Supplementary Table S1). A workflow summarizing 
the methods described above is shown in Supplementary 
Figure S1.

Inferring the MGEs novelty
The similarity of the plasmid to other plasmids in pub-
lic databases was checked using blastn (≥ 90% coverage, 
60% identity, and e-value < 1e-5; as implemented in the 
default parameters of the PLSDB search tool (version 
2.12.0) [70, 71]) and Mash (minimum identity = 99) (ver-
sion 2.2) against the PLSDB database version 2020_06_23 
[72], which contains 34,513 reference plasmids. The best 
matches were selected in both blastn and Mash outputs.

Inferring the MGEs potential host MAGs taxonomy and 
associations
We used a database of metagenome-assembled genomes 
(MAGs) derived of two previous studies (n = 2,589) 
(genome completeness ≥ 50% and contamination ≤ 10%) 
[36, 39] (Supplementary Table S2). The MAGs were taxo-
nomically annotated using the function ‘classify’ imple-
mented in GT-DBTk (version 2.1.0; r207) [73]. Then, the 
MAGs were classified into three categories based on the 
taxonomic annotation: bacteria (non-CPR), archaea, and 
CPR. To increase the number of possible MGEs-MAGs 
associations, the non-dereplicated MAGs were also 
included in the analysis. MAG completeness and redun-
dancy were assessed using CheckM (version 1.2.0) [74] 
(Supplementary Table S2). A set of 43 markers proposed 
by Brown et al., 2015 was used to estimate the complete-
ness and redundancy of the CPR MAGs [75].

To infer the association between MGEs and MAGs 
we used two approaches. First, we used the Mash screen 
algorithm (version 2.2) (minimum identity = 99 and 
shared hashes of at least 800/1,000) [46]. Briefly, a data-
base with the MGEs (1,000 bp length) was created using 
the sketch function in Mash (k-mer = 21 and sketch 
size = 1,000). This database was subsequently used to esti-
mate the number of shared hashes between the MGEs 
and the individual MAGs. Second, we did host assign-
ment for the non-redundant plasmids based on the 

https://zenodo.org/records/14500014
https://zenodo.org/records/14500014
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iPHoP (version 1.3.3) [45] framework with the default 
parameters and the database “Aug_2023_pub” and MAG 
groundwater custom database (n = 2,589). Only the top 
hits were considered in this approach. We then merged 
Mash and iPHoP results.

A concatenated protein alignment generated with 
GTDB-Tk for bacteria and a separate alignment for 
archaea (refined and dereplicated MAGs only) were 
used to infer phylogenetic trees. The maximum likeli-
hood trees were estimated (bacteria and archaea) using 
IQ-TREE tool (version 2.2.0.3) [76] and the protein sub-
stitution model Whelan and Goldman (WAG) [77]. The 
phylogenies were visualized together with the MGEs-
MAGs associations using iTOL (version 6.8) [78].

An additional way to identify the host chromosome 
of our MGEs was using the CRISPRspacers present in 
the MAGs. CRISPR-Cas arrays in groundwater MAGs 
(n = 2,589) were identified using CRISPRCasFinder (ver-
sion 4.2.30) [79]. The CRISPR-Cas arrays with levels of 
evidence 3 and 4 were used to extract the CRISPRspac-
ers. The spacers corresponding to each array with a 
length greater than 25 bp were aligned against the MGEs 
database using blastn-short [70]. Only the hits with align-
ment coverage 100%, ≤ 2 mismatches, and sequence 
identity ≥ 90% were kept and considered as protospacer-
to-spacer matches as described previously by Hwang et 
al. [80]. The spacers in the CRISPR-Cas arrays were used 
to predict the potential MGE-MAG connections.

MGEs and MAGs community composition across the 
Hainich transect based on coverage depth
To estimate the coverage depth of each MGE, the 
metagenomic reads for each of our 32 metagenomes were 
mapped using minimap2 (version 2.24) [81] as imple-
mented in CoverM (version 0.6.1) (​h​t​t​p​​s​:​/​​/​g​i​t​​h​u​​b​.​c​​o​m​/​​
w​w​o​o​​d​/​​C​o​v​e​r​M). The coverage depth was based on the 
MetaBAT method (adjusted coverage) [82](Parameters:–
min-read-percent-identity 0.95–trim-min 0.05–trim-
max 0.95 --min-covered-fraction 0). MGE coverages 
were normalized across samples using a scaling factor 
calculated based on the number of RNA polymerase B 
(rpoB) genes in the quality-filtered reads, as was previ-
ously described (Supplementary Table S3) [36, 39].

MGEs with coverage depth greater than 1 were con-
sidered to be present in the replicates. MGEs were sep-
arated into three types: plasmids, phages, and uMGEs 
(Supplementary Table S4). We determined the presence/
absence of MGEs across the replicates, samples, and filter 
fractions based on the coverage. Furthermore, we identi-
fied core MGEs that were present in all wells, and shared 
within and between filter fractions.

A matrix of coverages was generated for each MGE 
type and imported in R (version 4.2.2) [83, 84] to esti-
mate the Jaccard distances and Bray-Curtis dissimilarities 

using the package vegan (version 2.6-4) [85]. These mea-
surements were used to assess the MGE community 
composition and perform non-metric multidimensional 
scaling (NMDS) analysis. To evaluate the effect of the site 
on MGE composition, we used the permutational mul-
tivariate analysis of variance (PERMANOVA) test based 
on the adonis2 function with the parameter by margin.

Likewise, the normalized mean coverages of MAGs 
were estimated and used for similar analyses. Based 
on the taxonomy assigned by GTDB-Tk, MAGs were 
divided into three groups: non-CPR bacteria (n = 368), 
CPR bacteria (n = 542), and archaea (n = 164).

To test the linkage between MGEs community com-
position and MAGs community composition, we per-
formed Procrustes and Mantel analyses in R with the 
package vegan (version 2.6-4) [85]. The coverage matrices 
were transformed to Bray-Curtis distances and compared 
using the protest() function with 9,999 permutations. 
In addition, we evaluated the correspondence between 
MGEs and MAGs composition using a Mantel test with 
9,999 permutations in R.

Microbe-MGE interactions and network visualization
Sequence coverage depth matrices were generated for 
each MGE type (plasmids, phages, and uMGEs). Individ-
ual MGEs with a total coverage of less than 50X over the 
entire metagenome sample were filtered out. MGEs with 
coverage depth of less than 2X per metagenome were 
also filtered out. In addition, MGEs detected in fewer 
than 25% of metagenomes were excluded. This allowed 
us to consider only the MGEs present in at least two dif-
ferent samples or exclude rare MGEs. Coverage matrices 
for non-CPR bacteria, CPR, and archaea were generated 
using the same parameters.

Microbe-MGE interaction network analyses were per-
formed using SPIEC-EASI (Sparse Inverse Covariance 
estimation for Ecological Association Inference) [86] and 
the neighborhood selection framework (also known as 
MB method) (version 1.1.2) as implemented in NetCoMi 
(version 1.1.0) [87]. SPIEC-EASI allowed the estimation 
of conditional independence between MGEs and the 
host MAGs. MGEs and MAGs were conditionally inde-
pendent if their abundances were independent giving the 
abundances of all the others in the network.

Metabolic functions of MGEs
Genes of MGEs were functionally annotated using the 
tool DRAM (version 1.4.6) [88], which includes annota-
tions based on the MEROPS peptidase [89], KOfam [90], 
Pfam [60], and dbCAN/CAZYmes databases [91]. The 
MGEs were merged according to sample repeats and 
divided into the three MGE types (plasmids, phages, and 
uMGEs). Gene prediction was performed using Prodigal 
(version 2.6.3) [92].

https://github.com/wwood/CoverM
https://github.com/wwood/CoverM
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Presence/absence matrices were generated for all the 
MGEs, plasmids, phages, and uMGEs based on func-
tional annotations. Hierarchical clustering of samples 
was performed using the hclust function implemented in 
the pheatmap R package (version 1.0.12) [93].

To know the functional contribution of the MGEs per 
type to the microbial community, the relative abundances 
of each ) functional category based on the Clusters of 
Orthologous Genes (COG) were estimated for each MGE 
type. We used eggNOG mapper (version 2.1.9; database 
version 5.0.2) [63] to functionally annotate genes using 
the COG20 database [94, 95]. To assess the presence of 
antibiotic resistance genes (ARGs), we annotate MGE 
contigs using the Resistance Gene Identifier (RGI, ver-
sion 6.0.2) in the Comprehensive Antibiotic Resistance 
Database (CARD, version 3.2.7) with default parameters. 
Further, gene matches with ARGs were organized into 
three categories: perfect, strict, and loose as previously 
described [96]. In addition, we searched for ARGs in 
MGEs using the NCBI AMRfinder tool (version 3.11.18) 
[97].

To assess the linkage between MGE coverage depth 
and environmental parameters (Supplementary Table 
S4), we calculated Spearman’s rank correlation coefficient 
using the R cor function. The statistical significance of 
the correlations was determined through a permutation 
test with 999 iterations. We then compared the func-
tional annotations of genes in both MGEs with and with-
out strong correlations, identifying the functions that 
were uniquely associated with the MGEs showing strong 
correlations.

Gene expression in MGEs
The quality-filtered metatranscriptomic reads (n = 17) 
were used as input in Kallisto (version 0.46.2) [98] to esti-
mate the number of transcripts per gene in the MGEs. 
The mean of number of transcripts per million (TPM) 
was calculated based on the number of samples per well 
(H41, H43, H51, H52). For well H32, where only one 
sample was available, the mean was not calculated. The 
TPMs were normalized using a scaling factor based on 
the rpoB gene as was done for the DNA samples, and 
then expressed in log2 scale and used as input to visualize 
the gene expression in specific plasmids of interest (i.e., 
cobalamin and mercury resistance plasmids).

Results
Mobile genetic elements (MGEs) exist at all wells in the 
Hainich CZE
We identified a total of 4,609 dereplicate MGE sequences 
across the six selected groundwater wells of the Hainich 
CZE that are most characteristic of the spatial differen-
tiation of groundwater microbiomes along the hillslope, 
with N-compounds and dissolved oxygen as the major 

determinants [99] (Fig.  1A; Supplementary Table S1). 
The MGEs were predicted using three plasmid predic-
tion tools—PlasX, SCAPP, and DomCycle—on bulk 
metagenomic data obtained from two groundwater fil-
ter fractions. By utilizing a sequential filtration approach 
through 0.2  μm and 0.1  μm filters, we ensured that 
smaller microorganisms, which may play critical roles 
in groundwater ecology and biogeochemical processes, 
were not overlooked. Next, we performed dereplication 
using the MobMess algorithm, applying thresholds of 
≥ 90% sequence identity and ≥ 90% coverage. To further 
characterize the non-redundant MGEs identified, we 
employed viral prediction tools and protein sequence 
annotation associated with plasmids. These analyses 
categorized the MGEs into three distinct types: i) plas-
mids (n = 664; 14.41%), of which 119 (17.92%) contain 
relaxase genes, indicating their potential for mobiliza-
tion, ii) phages (n = 1,549; 33.61%), and iii) unassigned 
MGEs (uMGE), encompassing those with ambiguous 
classification or the presence of transposase and inser-
tion sequences) (n = 2,396; 51.98%). This dataset not only 
provides a comprehensive overview of plasmids but also 
offers exciting opportunities to investigate other MGEs, 
such as phages and uMGEs, expanding our understand-
ing of their ecological roles and evolutionary dynamics in 
groundwater ecosystems.

The predicted MGEs ranged in size from 1,000  bp 
to 270,036  bp, with a mean length of 8,987  bp. Plas-
mid sequence lengths were normally distributed with a 
median size of 4,100.5 bp (Supplementary Figure S2). On 
average, predicted plasmid sequences account for 0.71% 
(Standard deviation = 0.58%) of the total sequence length 
per metagenomic assembly. The distribution of MGE 
types across filter fractions showed that uMGEs, which 
were enriched in transposase sequences, were the most 
abundant, comprising 47–59% of MGEs in both filter 
fractions. In contrast, plasmids showed the lowest abun-
dance, ranging from 13 to 18% (Fig. 1B). Across all filter 
fractions and sampling sites, we identified approximately 
666 to 1,780 MGEs per sample, depending on the filter 
fraction and well location (Fig. 1C).

We additionally identified the MGEs that were shared 
across all wells, within the same filter fraction, and 
between different filter fractions from the same well. 
These shared MGEs were categorized as “core MGEs”. 
The highest proportion of core MGEs was found across 
both filter fractions within the same groundwater well, 
with an average of 13.92% (≈ 641 out of 4,609), indi-
cating a reduced overlap between the filter fractions. 
Of these, 9.73% were plasmids, 34.08% were phages, 
and 56.19% were uMGEs (Fig.  1D). When considering 
only the MGEs present in either filter fraction within a 
sample (mean = 2,505 MGEs), the proportion of core 
shared sequences averaged 25.70%. In terms of filter 
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fraction-specific shared MGEs, samples from the 0.1 μm 
filter fraction contained a higher proportion of core 
MGEs (268 out of 4,609; 5.82%, with 97 being plasmids 
(97 out of 664 plasmids;14.61%)) compared to the 0.2 μm 
fraction (26 out of 4,609; 0.56%, with five being plasmids). 
Notably, there was a small proportion of core MGEs (14 
out of 4,609; 0.30%) that were present in all samples, 
regardless of well or filter size, one of which was identi-
fied as a plasmid. Thus, the use of two filter fractions 
facilitated the exploration of greater diversity within the 
overall groundwater MGE pool, revealing distinct com-
positions across different size fractions.

Groundwater: a reservoir of plasmids linked to diverse and 
abundant microbial taxa
Next, we explored the potential association between 
MGEs and their microbial hosts. We found that 37.51% 
of the MGEs (1,729 out of 4,609) were associated with a 
host. This group included 59.64% of plasmids (396 out 
of 664), 20.27% of phages (314 out of 1,549), and 42.53% 
of unassigned MGEs (uMGEs) (1,019 out of 2,396; Sup-
plementary Table S5). To predict these MGE-host asso-
ciations, we used two complementary approaches. First, 
we predicted host associations based on shared k-mer 
sequences between the MGEs and the MAGs (n = 2,589) 
recovered from the same groundwater metagenomic 
dataset. Additionally, we applied the integrated phage-
host prediction tool (iPHoP [45]), which combines a com-
prehensive genomic database (including representative 

Fig. 1  (A) Groundwater sampling was conducted at wells representing both oxic (O) and anoxic (A) conditions along the Hainich Critical Zone Explor-
atory (CZE) transect. Groundwater samples were sequentially filtered through 0.2 μm and 0.1 μm filters, with each fraction being used for metagenomic 
sequencing. (B) Proportions of MGE types in the two filtration fractions. (C) MGEs were detected in all groundwater wells. (D) Percentage of MGE types 
common to both 0.1 μm and 0.2 μm filter fractions for each well, calculated based on MGEs detected in both fractions. The well H32 was excluded from 
the analysis due to the absence of a 0.1 μm filter fraction
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genomes in the GTDB [100], the genomes from Earth’s 
Microbiomes and IMG isolate databases [101]) alongside 
our custom groundwater MAG database. By incorporat-
ing multiple databases and prediction methods, we aimed 
to enhance potential host predictions, partially address-
ing the limitations of MGE binning in short-read metage-
nomic data [102]. Although this approach does not fully 
resolve the plasmid binning issue, the use of long-read 
sequencing in future studies may significantly improve 
the host predictions.

Among the MGEs with potential host associations 
(n = 1,729), plasmids and phages represented 22.90% 
(n = 396) and 18.16% (n = 314), respectively. In contrast, a 
larger proportion, 58.94% (n = 1,019), corresponded with 
uMGEs. These MGEs with possible host associations 

were linked to several microbial lineages, including 
the most abundant CPR bacteria and archaea found in 
groundwater (Fig. 2; Supplementary Figure S3). Plasmids 
have been rarely studied in CPR bacteria, representing a 
significant gap in our understanding of these ultra-small 
microbes. Here, we observed that a small fraction (2.56%; 
17 out of 664) of plasmids was potentially associated with 
CPR bacteria (Patescibacteria phylum), encompassing 11 
orders, 10 of which are found in groundwater (Fig. 3A). 
In contrast, the highest proportion of plasmid sequences 
(approximately 42.17%; 280 out of 664) were linked to 
bacterial lineages within the phylum Pseudomonadota, 
the second most abundant group in groundwater, which 
includes 17 orders, nine of which are also found in this 
environment. This implied that the Pseudomonadota 

Fig. 2  MGEs are associated with multiple microbial lineages in groundwater. The phylogenetic tree was constructed using a protein concatenated align-
ment of refined MAGs generated with the GTDB-Tk tool. Non-CPR and CPR bacteria are highlighted in gray and purple, respectively. The innermost circle 
represents bacterial classification by class. The three outermost circles show the presence/absence of MGE associations across groundwater reference and 
non-redundant MAGs. MGE associations in archaea are shown in Supplementary Figure S3
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phylum is the main host of plasmids in this groundwa-
ter system. MGEs of the phage type were more frequently 
associated with CPR bacteria (5.94%; 92 out of 1,549) 
than with Pseudomonadota (3.81%; 59 out of 1,549). We 
then normalized MGE counts across phyla to account 
for taxon-specific sequencing effort; subsequent analysis 
revealed that the phylum Pseudomonadota was enriched 
in plasmids compared to other lineages, while Patescibac-
teria and Nanoarchaeota showed a depletion (Fig.  3B), 
which aligned with our initial findings. In contrast to the 
previous observation based on absolute counts, CPR bac-
teria were also found to be less enriched in phages and 
uMGEs relative to Pseudomonadota (Supplementary 
Figure S4A and B). However, it’s important to note that 
our focus on plasmid identification may have overlooked 

phage diversity, so this interpretation should be taken 
with caution.

After classifying non-redundant MAGs into bacterial 
prokaryotic orders (n = 179), we found that 10 out of 56 
(17.86%) groundwater CPR orders were associated with 
plasmids. In contrast, the ratio for non-CPR bacteria was 
higher, with 36 out of 109 (33.03%) orders showing asso-
ciations with plasmids (Fig. 3C). Among archaea, only 2 
out of 14 (14.29%) orders were associated with plasmids.

Plasmids potentially hosted by CPR bacteria were 
smaller on average (mean = 6301.9  bp, SD = 6014.0, 
n = 17) than those potentially hosted by Pseudomonadota 
(mean = 16682.5  bp, SD = 35869.9, n = 280). However, 
this difference was not statistically significant (two-sided 
Wilcoxon test, adjusted for false discovery rate (FDR), 
p > 0.05). The lack of statistical significance, despite the 

Fig. 3  (A) Percentage of plasmids associated with microbial hosts at the phylum level. (B) The box plots illustrate the distribution of plasmid counts 
across microbial phylum, normalized for sequencing coverage depth. The central line in each box marks the median, while the box itself spans from the 
first to third quartiles. Outliers were plotted individually, and four of them exceeding a value of 2 were omitted. The phylum highlighted in black in Fig. 3B 
correspond to those in Fig. 3A. (C) MGEs linked to 179 prokaryotic orders present in groundwater. The presence/absence of MGEs is shown. An occurrence 
was considered if at least one host per taxonomic order was associated with a specific type of MGE. Only taxonomic classes with at least three orders are 
highlighted. The percentage of prokaryotic orders associated with at least one MGE sequence is indicated below the figure
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apparent difference in means, is likely due to the high 
variability in plasmid sizes within the Pseudomonadota 
phylum, as evidenced by the large standard deviation, as 
well as the substantial difference in sample sizes between 
the two groups (Supplementary Figure S5).

We also found 23 MGEs-host associations using spac-
ers, 20 of which were with non-CPR hosts. Most MAG 
spacers (19/23) matched to phage sequences (Supple-
mentary Table S6). Therefore, the use of spacer-to-pro-
tospacer alignments was unreliable to identify potential 
plasmid-host associations. For example, in refined 
MAGs, CRISPR-Cas systems arrays with evidence level 3 
and 4 were present in only 7.4% (191/2,589) of them.

Furthermore, we evaluated whether our MGEs show 
similarities with plasmids already reported in public 
databases, using a query coverage greater than or equal 
to 90% and a minimum identity of 60%. Only a few MGEs 
showed similarity with known plasmids (4.34%; 200 out 
of 4,609), with a mean percentage identity of 92.3%. These 
matching MGEs were distributed across the three MGE 
types: plasmids (43.50%), phages (12.00%), and uMGEs 
(44.50%) (Supplementary Table S1). Most matches were 
identified within the genera Sphingobium (31.00%), Aci-
netobacter (15.50%), Cupriavidus (7.50%), Sphingomo-
nas (6.00%), Sphingopyxis (6.00%), and Novosphingobium 
(4.00%). The predominance of matches to Sphingobium 
and Acinetobacter corroborated previous findings in 
groundwater [43]. Notably, plasmid-related sequences 
had limited representation in this database (13.10%; 87 
out of 664), aligning with the scarcity of matches found 
in other aquatic microbiomes (1.65%) [33].Thus, the vast 
majority of MGEs, such as plasmids in groundwater, 
remain largely uncharacterized.

Plasmids as well as other MGEs sharing genomic 
similarities are mostly hosted by phylogenetically related 
MAGs
MGEs can be organized into modules or clusters of evo-
lutionarily related sequences based on their similarities. 
To achieve this, we generated a sequence similarity net-
work using the MobMess algorithm, which performed 
pairwise alignment comparisons of MGE sequences. This 
approach enabled the grouping of connected sequences 
into distinct similarity modules. After linking the host 
to the MGEs (1,729 out of 4,609), we observed that sev-
eral MGE modules in the similarity network are mostly 
hosted by phylogenetically closely related bacteria such 
as Alphaproteobacteria (Sphingomonadales; 21 out of 
190 (11.05%) modules with at least three MGEs) (Fig. 4). 
Fourteen of those modules were exclusively related to 
CPR bacteria. These results show a limited host range 
for closely related MGEs, as has been shown for plas-
mids [103]. Here, we also showed several examples of 
MGE modules (4.74%; 9 out of 190) that contained a mix 

of sequences associated with various taxonomic groups, 
including Pseudomonadota and Omnitrophota, as well as 
CPR/Patescibacteria and Nitrospirota, which are distantly 
related at the phylum level (Supplementary Table S5). 
Taxonomic assignment of OGs (ortholog groups) within 
the MGEs based on eggNOG, confirmed that closely 
related MGEs are probably evolutionarily related (e.g., 
Sphingomonadales). In addition, we found that 50.50% 
of the modules containing at least three non-redun-
dant MGEs were composed of a mix of MGE types and 
were considered hybrid clusters. While modules com-
posed of plasmid, phage, and uMGE alone, represented 
14.21%, 13.16%, and 22.11%, respectively. The presence of 
hybrid MGE modules underscored the mosaic composi-
tion of plasmid, for example (Supplementary Figure S6, 
Supplementary Data S1). These modules might preserve 
backbone genes while carrying accessory genes. How-
ever, distinguishing core genes from accessory ones can 
be challenging when MGE sequences are incomplete or 
have undergone multiple genetic rearrangements. For 
instance, genes involved in plasmid replication could be 
considered part of the core genome [104], although those 
genes are not generally present in all plasmids [11].

Spatial distribution of microbial communities, plasmids, 
and other MGEs, and their positive associations
Given that microbial communities in the Hainich 
groundwater system exhibit spatial distribution, we won-
dered whether MGEs, particularly plasmids, show simi-
lar trends. To explore this, we assessed the community 
structures of microbial and MGE types across various 
sampling sites by analyzing their abundances and esti-
mating dissimilarities. A significant effect of the sampling 
site was observed on the MGE composition (Bray-Cur-
tis and Jaccard distances; PERMANOVA (p ≤ 0.001)). 
Indeed, plasmids and other MGEs exhibited spatial orga-
nization (Fig. 5A, B, and C), resembling the spatially dis-
tinct microbial communities at the Hainich groundwater 
sites (Fig.  5D). There was also a significant effect of the 
filter fractions (0.1 and 0.2 μm). After removing well H32, 
which contained only two samples from the 0.2 μm frac-
tion, the effects of sampling site and filter remained sig-
nificant (Supplementary Figure S7). Variations in MGE 
and microbial community compositions correlated 
among groundwater wells. We observed local selection 
of the microbial and the MGE communities in all cases, 
including non-CPR bacteria and plasmids, for example 
(Procrustean superimposition (r = 0.9393, p ≤ 0.001) and 
Mantel test based on Spearman correlation (r = 0.793, 
p ≤ 0.001) (Supplementary Table S7).

Considering the potential co-dependence among bac-
teria, archaea, and plasmids, we next investigated the 
interactions between non-redundant MAGs found in 
groundwater and plasmids by employing association 
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networks. We observed significant positive associations 
(82.54% between bacteria, archaea, and plasmids) (Sup-
plementary Table S8 and Supplementary Table S9).

Some positive associations between plasmid type and 
microbes were congruent with the plasmid taxonomic 
associations identified using nucleotide sequence shar-
ing. For example, five of the 52 positive associations 
were between plasmids and their previously identified 
prokaryotic host at the order level in groundwater, sug-
gesting a strong link between these host and plasmids. 
These orders included Caulobacterales, Burkholderiales, 
Sphingomonadales, Brocadiales, and Nitrospirales, sev-
eral of which are known to be abundant in groundwater 
[39]. Positive associations were observed between plas-
mids and CPR/Patescibacteria. Interactions were also 
observed among multiple MAGs and a single plasmid 
type and vice versa.

While we also explored and observed positive associa-
tions for other MGE types, the limitations of our method 
to predict other MGEs and the potential biases intro-
duced by varying plasmid copy numbers necessitate fur-
ther exploration to fully understand these relationships. 
For instance, in the case of phages, 16 out of 131 positive 

associations were with a known host at the order level, 
while for uMGEs, this number was 44 out of 199.

Plasmids are enriched in inorganic ion transport and 
energy production genes in contrast to other MGEs
When comparing the enrichment of COG categories 
among plasmids, phages, and uMGEs, we observed sig-
nificant enrichment in genes related to inorganic ion 
transport and energy production in plasmids (Fig.  6A, 
Supplementary Table S10). Of all the genes in the plas-
mids, 48% (4,186/ 8,764) have a known function. 
Functions related to transcription or plasmid own main-
tenance (mobility) were also enriched in plasmids across 
all the samples, whereas genes involved in envelope 
biosynthesis were more common in MGEs identified as 
phage. Based on additional analysis of auxiliary metabolic 
genes we observed that plasmids, are functionally dif-
ferent between filter fractions (0.1 and 0.2 μm) (Fig. 6B). 
Genes related to hydrocarbon degradation, and sulfur 
metabolism (oxidation of thiosulfate to sulfate) were 
observed in the plasmids associated with the 0.1 μm fil-
ter fraction, while nitrogen metabolism (nitrite to nitric 
oxic) was present in both fractions. Pathways involved 
in methanogenesis were observed in plasmids of both 

Fig. 4  MGE similarity network, with each module containing at least three non-redundant MGEs. The node shape indicates the MGE type. Taxonomic 
groups at the class/order level are highlighted by different colors in the graph. Nodes with transparent or gray filling lack known host association. Edges 
connect MGEs contained within one another (≥ 90% sequence identity and ≥ 90% coverage of the smaller plasmid) [54]. Only the most abundant host 
phyla found in groundwater are shown in the color legend below the figure
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filter fractions (acetate to methane) (Fig.  6C). When 
comparing the plasmid functions potentially hosted by 
CPR/Patescibacteria, we identified a plasmid that car-
ries genes involved in cobalamin biosynthesis, such as 
cobS and cobT, which encode cobaltochelatases. Notably, 
cobS was absent in CPR MAGs from our groundwater 
dataset. This absence in CPR MAGs, alongside the pres-
ence of cobS on a plasmid, suggests that plasmids might 
compensate for essential metabolic functions. In con-
trast, plasmids hosted by Pseudomonadota not only con-
tained a more complete cobalamin biosynthesis pathway 
but also encoded genes related to enzymatic functions, 
including peptidases and key genes involved in methane 
and hydrocarbon degradation.

We next investigated the relationships between plas-
mids and environmental variables (pH, dissolved oxygen, 
ammonium, nitrate, and sulfate) in the Hainich ground-
water system, focusing on how these factors influence 

plasmid composition and gene functions. Using Spear-
man correlations, we identified 71 out of 664 plasmids 
(10.7%), which were strongly associated with various 
environmental parameters (p < 0.05; permutations = 999) 
(Supplementary Figure S9). pH emerged as the dominant 
driver, with 53 out of 71 (74.65%) plasmids negatively cor-
related, underscoring its critical role in shaping microbial 
communities in groundwater systems [99, 105]. The plas-
mids negatively correlated with pH often contained genes 
involved in energy production and conversion (COG C), 
coenzyme transport and metabolism (COG H), inorganic 
ion transport and metabolism (COG P), and posttransla-
tional modification, protein turnover, chaperones (COG 
O). In comparison, a plasmid positively correlated with 
dissolved oxygen encoded a gene for nitric oxide dioxy-
genase activity (Supplementary Table S11), demonstrat-
ing how specific environmental conditions could shape 
the functional repertoire of plasmids.

Fig. 5  MGEs are shaped by the local groundwater microbiomes. Non-metric multidimensional scaling (NMDS) plots show the local variation in MGEs and 
microbiome diversity ((A), Plasmids, (B), Phages, (C), uMGEs, and (D) Microbial community), based on Bray–Curtis dissimilarity matrices of the normalized 
coverage of the MGEs and microbial communities across the metagenomic samples. Plots based on Jaccard distances are shown in Supplementary Fig-
ure S8. With the sampling site explaining most of the variation (between 47.4% and 77.2%) in the MGEs and microbial community composition (p < 0.001)
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A closer examination of the plasmid functions revealed 
the presence of a conjugative/mobilizable plasmid 
(238,872  bp) containing genes involved in the aerobic 
biosynthesis of the corrin ring. This plasmid is prob-
ably hosted by members of the Sphingomonadales, as 
shown by the taxonomic annotation of its proteins and 
the host prediction. Some genes for the anaerobic route 
of cobalamin were present. Genes involved in the final 
steps of cobalamin were also present in that plasmid (i.e., 
nucleotide loop assembly and adenosylation of cobalt). 

Metatranscriptomic data from a previous sampling time 
of groundwater obtained from the same wells supported 
the occurrence of this cobalamin plasmid with transcrip-
tion of genes involved in the plasmid mobility (secretion 
systems) and genes related to the corrin ring biosynthesis 
(CobG, CobH, CobM, and CobN) (Fig. 7; Supplementary 
Table S12). Based on auxiliary metabolic genes, a com-
plete pathway related to the reduction of mercury was 
also identified in a plasmid (12,176 bp) associated with a 
Pseudomonadota host. This resistance plasmid contains 

Fig. 6  (A). Plasmid functional repertoire compared to other MGEs. Functional enrichment of MGEs based on COG annotations. Differences in functional 
enrichment between plasmids and phage sequences were tested using a two-sided Wilcoxon test. Statistically significant pairwise comparisons are 
shown (* p < 0.01, ** p < 0.001, and *** p < 0.0001). (B) Metabolic differences across sites and filter fractions in plasmid sequences. The heatmap shows the 
presence (purple squares) and absence (pink squares) of specific auxiliary metabolic genes (AMGs) in the plasmid sequences across sites. The data cor-
responding to all the MGEs, phages, and uMGEs are shown in Supplementary Figure S10A, B, and C, respectively. (C) Functional annotation of metabolic 
pathways in plasmid sequences with completeness greater than 0.5
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genes that are being transcribed (merE, merD, merB, 
merA, merP, and merR).

High confidence genes encoding antibiotic resistance 
mechanisms were absent in plasmids and other MGEs. 
Only antibiotic resistance genes (ARGs) belonging to the 
‘loose’ category were detected in plasmids. These loose 
hits can represent distantly related homologs to known 
ARGs or potential false positives, with identity matches 
below 55% compared to CARD database references. In 
contrast, genes with at least one strict hit to the CARD 
database were present in the groundwater MAGs. Strict 
hits can detect previously unknown variants of known 
ARGs, indicating the presence of potentially novel antibi-
otic resistance mechanisms in the groundwater microbial 
community. No perfect hits (exact matches to curated 
reference sequences) were found in MAGs. (Supplemen-
tary Table S13). This finding emphasizes that plasmids 
do not play a role in the spread of emerging ARGs in this 
groundwater system due to their lack of high confidence 
ARGs.

Discussion
In this study, we provided an in-depth characterization of 
the plasmid pool in a pristine, low cell-density ground-
water system, predominantly inhabited by ultra-small 
microbes such as CPR bacteria. In these groundwater 
systems, plasmids may play a critical role by encoding 
products that serve as “public goods”, potentially allevi-
ating metabolic constraints of microbial communities 
and influencing microbial interactions and ecosystem 
processes. Our analysis revealed a mobilome compris-
ing 4,609 unique sequences. This mobilome consisted 
of plasmids (14.41%), phages (33.61%), and uncharacter-
ized MGEs (51.98%), many of which remain unidentified 
with respect to their prokaryotic hosts. Among these, 
core MGEs (MGEs shared across all sampling sites) 
represented less than 6% of the total unique sequences. 
Similarly, core plasmids (plasmids found in all sampling 
locations) accounted for less than 15% of the total unique 
plasmid sequences. Remarkably, this groundwater mobi-
lome is 2.85 times larger than that previously reported 
for low and high heavy metal-contaminated groundwa-
ter at the Oak Ridge Reservation [43]. However, plasmids 
and other MGEs in our pristine system were notably 
smaller—typically less than 12  kb—compared to those 

Fig. 7  Metatranscriptome data confirmed the transcription of certain genes on the Cobalamin plasmid. From innermost to outermost, the plasmid rings 
represent gene size, %GC content, gene orientation, the number of transcripts per million across five groundwater wells, and gene functional annotation
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found at Oak Ridge Reservation (mean size 22 kb) [43]. 
Also, in high-cell density environments, such as human 
gut, soil and wastewater, plasmids are typically larger, 
often exceeding twice the median size of those found in 
groundwater [9, 48, 106, 107].

We also observed a relatively low proportion of plas-
mid sequences (less than 1%) compared to the total 
number of metagenomic contigs (mean = 187,464). This 
finding mirrors results from heavy metal-contaminated 
groundwater39 but contrasts sharply with high-cell den-
sity, nutrient-rich environments—such as wastewater 
treatment plant—that are suspected hotspots for HGT, 
where plasmid sequences account for approximately 6% 
of the total metagenome [108]. Moreover, the number of 
non-redundant plasmid contigs identified in groundwa-
ter was significantly lower than in wastewater systems, 
with 664 detected across 32 metagenomes compared to 
10,942 across 78. Differences in plasmid identification 
methodologies may influence the interpretation of these 
results [109].

The low abundance of plasmids in groundwater could 
be attributed to several factors. These include the stream-
lined genome size and reduced metabolism of host cells 
compared to eutrophic environments [39], as well as the 
limited gene flow due to the sparse population of cells 
(around 1 × 10^5 cells/mL in groundwater [110], com-
pared to the much higher densities in wastewater bio-
films [21]). Additionally, the oligotrophic conditions in 
groundwater, combined with simpler biofilm formation 
in carbonate rock aquifers [111], hydrological barri-
ers, and a more evenly distributed cell population, likely 
limit the transfer of larger DNA molecules such as plas-
mids. In contrast, complex biofilms in nutrient-rich envi-
ronments—where cells are densely packed and exhibit 
increased interactions—facilitate more frequent genetic 
exchange, particularly through conjugation [22]. This 
higher rate of genetic transfer in biofilms is significantly 
greater than that observed in dispersed, motile plank-
tonic cells in aquatic environments, where cell-to-cell 
interactions are more limited [22].

In relation to plasmid lifestyles in groundwater, our 
analysis revealed a high prevalence of non-mobilizable 
plasmids (~ 82%). This proportion is higher than those 
generally reported in other environmental systems, 
where non-mobilizable plasmids typically represent 
between 40% and 59% [112] of the total plasmid popula-
tion, though some other studies report values as high as 
90% [42, 106]. The persistence of low cost/non-mobiliz-
able plasmids in groundwater microbes could be favored 
by the reduced metabolic burden they cause compared 
to the mobilizable plasmids, which rely on host energy 
for processes such as conjugation between cells, rather 
than using natural transformation or transduction [43, 
106, 113]. This observation aligns with the conditions 

contributing to the low abundance of plasmids in 
groundwater, emphasizing how ecological constraints 
limiting plasmid presence could also shape their mobility 
within groundwater microbiomes.

Building on these insights into plasmid lifestyles, we 
further investigated their host associations and distribu-
tion across groundwater microbiomes. Nearly 59.64% 
of plasmids were successfully linked to their host, rep-
resenting a higher proportion of plasmid-host connec-
tions compared to those observed in the human gut 
microbiome, where these associations typically range 
between 21% and 36.03% [29, 114]. This increased pro-
portion of plasmid-host linkage likely reflects the use of 
extended databases in our analysis, which incorporated 
data from diverse environments, thereby enhancing the 
accuracy of plasmid-host association predictions. Here, 
plasmids were predominantly hosted by bacteria with 
larger genomes, particularly within the phylum Pseudo-
monadota (42.17%) and the class Alphaproteobacteria 
(27.11%). Alphaproteobacteria emerged as the primary 
hosts of plasmids in low-polluted groundwater, contrast-
ing with Beta/Gammaproteobacteria, which were the 
most frequent hosts in highly polluted groundwater [43] 
and wastewater [48]. Other host phyla identified included 
Nitrospirota (3.31%), CPR bacteria/Patescibacteria 
(2.56%), and Omnitrophota (2.11%). Notably, this order 
does not reflect the relative abundance of these taxa in 
the Hainich groundwater system, which is dominated by 
CPR/Patescibacteria (23–79% of the community), with 
other phyla present only secondarily [39]. Our findings 
provide important insights into the underexplored role of 
plasmids in CPR bacteria. Although plasmids were iden-
tified in a small proportion of CPR bacteria, the scarcity 
could be attributed to their symbiotic lifestyles, reduced 
genome sizes, and simplified metabolic capabilities [115]. 
These traits may render CPR bacteria less prone to HGT 
compared to taxa with larger genomes, which are gener-
ally more involved in HGT and can contain several and 
larger plasmids [116].

Despite their low representation among plasmid hosts, 
CPR bacteria may still benefit from plasmids and other 
MGEs. The mechanisms by which abundant taxa such 
as CPR bacteria interact with plasmids and harness their 
functions, particularly in nutrient-limited groundwater 
environments, remain an open and intriguing question. 
Understanding how these ultra-small microbes inte-
grate MGEs into their lifestyle could shed light on the 
ecological roles of plasmids in shaping microbial inter-
actions and survival strategies in low-biomass systems. 
However, studying these associations is challenging due 
to the transient and random linkages between plasmids 
and their microbial hosts, each following distinct evolu-
tionary trajectories. This complexity likely contributes to 
the absence of clear genomic signatures linking plasmids 
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to their hosts when using tools like Mash and iPHoP on 
microbial databases. Additionally, the rarity of CRISPR-
Cas systems in groundwater microbe, particularly in CPR 
bacteria [117], further complicates efforts to identify host 
associations using spacer-to-protospacer alignments. 
Improving metagenomic sequencing with long-read and 
Hi-C, along with spatial mapping of MGEs and hosts 
using fluorescence in situ hybridization (FISH), could 
help uncover more of these interactions [47].

Our results of plasmid distribution across phylogenetic 
groups provide further insight into how plasmids and 
other MGEs are mobilized within groundwater micro-
biomes. Specifically, we found that plasmids within the 
same similarity modules were more likely to be hosted 
and mobilized by bacteria within the same family (e.g., 
Alphaproteobacteria/Sphingomonadaceae, 11.05%). In 
contrast, modules composed of sequences linked to dif-
ferent hosts at the phylum level were relatively scarce, 
representing approximately 4.74% of the modules com-
posed by at least three MGEs with a median size of 
7.5  kb. Still, the persistence of broad-range similarity 
modules in groundwater remains uncertain. In contrast, 
broader range plasmids recognized to span across differ-
ent phyla in human microbiomes (1.5%), were generally 
larger (median = 30  kb) and often carried ARGs [118]. 
The rarity of these broad-range plasmids, coupled with 
the prevalence of similar plasmids shared among closely 
related microbes, suggested the presence of genetic bar-
riers within microbial populations [11, 29]—a topic that 
remains to be explored in groundwater environments.

Similarity modules, defined as those containing at least 
three non-redundant MGEs, predominantly showed a 
hybrid composition (50.50%) consisting of a mix of plas-
mids, phages, and uMGEs. This highlights the mosaic 
structure of MGEs [119, 120], including plasmids, which 
can be composed of genetic components from different 
sources that change in function of the host ecology. In 
addition, when we accounted for all the identified mod-
ules, including those with fewer than three MGEs per 
module, the majority were composed of one single non-
redundant MGE, (3,188 out of 3,643, or 87.51%), which 
further reinforced the uniqueness of our groundwater 
mobilome.

The diverse composition and uniqueness of ground-
water mobilome could suggest that plasmids and other 
MGEs, like microbial communities, appear to undergo 
local selection under similar ecological constraints, with 
the sampling site explaining most of the observed varia-
tion (between 47.4 and 77.2%). Previous research on the 
Hainich groundwater system highlight the importance 
of the hydrochemistry (35.0%) and the spatial distances 
(18.6%) in shaping microbial community composition 
of each individual well [99]. Similarly, in other environ-
ments, plasmid composition and resistomes have been 

shown to vary due to local selection pressures influ-
enced by microbiome diversity and abiotic conditions 
[121, 122]. Incorporating additional environmental fac-
tors, such as seasonality and microbial dispersal, could 
shed light on plasmid stability and dynamics in pristine 
groundwater systems. Understanding these dynam-
ics is particularly important for evaluating whether the 
groundwater mobilome is predominantly shaped by 
selective forces over neutral processes, a question that 
remains open to further investigations [106].

To further delve into these ecological associations, net-
work analysis between plasmid and bacteria indicated 
that plasmids for example showed strong positive associ-
ations with taxonomic group that commonly co-occurred 
and potentially interacted in groundwater, such as Nitro-
spirales, CPR/Paceibacteria, Pseudomonadota, and 
Nanoarchaea [39]. While co-occurrence network analy-
ses have generally been used to study MGE-host eco-
logical associations, particularly in the context of phages 
[123], their application to plasmids and in groundwater 
remained limited. Network analysis, complemented with 
functional analyses, could further aid in unveiling the 
ecological implication of these dominant positive associ-
ations. For instance, plasmid-host interactions in waste-
water revealed that beneficial plasmids are more likely to 
interact with a higher number of hosts than non-benefi-
cial plasmids [48].

In addition to these ecological patterns, we explored 
the functional roles of plasmids as carriers of key eco-
logical functions. Our analysis indicated that plasmids, 
including those with positive associations, showed 
enrichment in genes involved in inorganic ion trans-
port, energy production, and conversions, contrasting 
with other MGEs. This pattern aligned with observations 
from marine and freshwater plasmids [112]. Regarding 
the link between plasmids and environmental variables, 
pH had the strongest effect on plasmids (affecting 10.69% 
of them), reinforcing the role of pH in shaping microbial 
communities, as previously observed, and extending this 
influence on plasmids as well. A key finding of our study 
is the occurrence of a conjugative plasmid involved in 
cobalamin ring biosynthesis across multiple groundwater 
sites. This plasmid was not linked to a known-host and 
was identified in a community predominantly composed 
of microbes passing the < 0.2  μm filter. The expression 
of several genes localized on this plasmid, as indicated 
by prior metatranscriptome data [44], suggested its 
potential metabolic activity. Cobalamin is essential as a 
cofactor in various microbial cellular processes, includ-
ing environmentally significant cycles such as carbon 
fixation and acetogenesis via the Wood-Ljungdahl (WL) 
pathway [124–126]. Notably, the abundant Nitrospirota, 
thought to fix CO2 in groundwater via WL [36], exhib-
ited positive and strong associations with other plasmids. 
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Plasmid-derived products could serve as key public 
goods, facilitating cross-feeding interactions within com-
munities enriched in auxotrophic and small microbes, 
thereby easing the metabolic limitations. Additionally, 
genes located in some plasmids could complement met-
abolic pathways on the host chromosome. For instance, 
plasmids containing cobalamin-related genes were found 
in symbiotic microbes harboring complementary genes 
in their chromosome [127].

Moreover, we identified a complete pathway for mer-
cury (Hg) reduction in a plasmid associated with a Pseu-
domonadota host. Hg is a highly volatile and globally 
distributed element, with sedimentary rocks serving as 
natural reservoirs that could potentially expose ground-
water microbial communities to this element [128]. How-
ever, no elevated Hg concentrations are known in the 
Hainich CZE groundwater or host rock, which is pre-
dominantly composed of carbonate lithologies typically 
low in heavy metal content with Hg of two orders of mag-
nitude below the ppm range [129]. The presence of Hg 
resistance genes likely reflects legacy genetic elements or 
co-selection under other environmental stressors [130], 
rather than a direct response to local mercury contami-
nation. This plasmid could facilitate the mobilization of 
Hg resistance genes via HGT, impacting both pristine 
and low-impacted groundwater systems [43]. In addi-
tion to Hg-related functions, plasmids carried metabolic 
genes involved in methanogenesis - a known function in 
groundwater microbes [131]. While these specific func-
tions underscore the importance of plasmids in microbial 
metabolism, a substantial proportion of plasmid genes 
(52%) remained unannotated. This aligns with findings 
from other environments, where unannotated genes 
account for over 60% of plasmid sequences [27, 121]. 
The combination of well-characterized and unannotated 
genes emphasizes the dual role of plasmids: as key play-
ers in microbial ecosystem functionality and as reservoirs 
of genetic potential yet to be understood.

Lastly our groundwater plasmids lacked emerging 
anthropogenic-related ARGs. Plasmids are known for 
being carriers and spreaders of ARGs and there is evi-
dence of ARGs’ global distribution [132]. For instance, 
rapid dispersion of non-native plasmids, even across 
taxonomic boundaries, was reported from groundwater-
fed sand filter microbiomes suggesting that groundwa-
ter microbes may serve as a vector for the propagation 
of ARGs [133]. The absence of any ARGs on plasmids 
and other MGEs in pristine groundwater contrasted 
with observations in MGEs recovered from polluted 
groundwater [42, 43], and nutrient-rich environments, 
in which MGEs harboring ARGs are strongly associated 
with thriving copiotrophic bacteria [134–136]. This find-
ing highlights the need to preserve the pristine nature of 

these ecosystems and is aligned with the scarcity of ARGs 
in low human activity environments [137, 138].

While this study primarily focused on plasmids, it 
became evident that distinguishing these genetic ele-
ments from others, such as phage sequences and uMGEs, 
posed a significant challenge. The reliance on short 
genomic reads and the inability of existing plasmid pre-
diction tools to exclusively identify plasmid sequences 
were notable limitations. Plasmids often carry insertion 
or repeat sequences, complicating their assembly and 
recovery based on short sequence reads [102]. Therefore, 
the diversity and completeness of the plasmids in ground-
water might still be underestimated based on the current 
dataset. Upon subsequent reclassification, distinct MGE 
types emerged, each displaying marked differences in 
gene functionality. Given current bioinformatics bottle-
necks, it may be more effective to explore the mobilome 
as a whole [43, 67], acknowledging the distinct biologi-
cal features and ecological roles of different MGE types. 
Despite applying multiple host prediction strategies, the 
inherent constraints of short-read sequencing and exist-
ing MGE binning methods likely limited the resolution 
of true host associations, which may have impacted the 
accuracy of our findings. Although the extent of these 
missing associations remains uncertain in this study, 
previous work suggests that fewer than 29% of plasmids 
are successfully binned from short-read metagenomic 
datasets [102]. Integrating improved DNA extraction 
protocols for MGEs with long-read sequencing and prox-
imity-ligation methods such as Hi-C (High-throughput 
chromosomal conformation capture) holds promise for 
expanding the detectable taxonomic breadth of MGEs 
and enhancing the resolution of host–element associa-
tions, including those that span across different phyla [30, 
139].

Conclusions
Our study opens a path to the unexplored mobilome in 
groundwater ecosystems and their interactions with co-
occurring prokaryotic hosts, including the abundant 
Pseudomonadota, Nitrospirota, and CPR/Patescibacte-
ria. It sheds light on the role of plasmids in facilitating 
gene spread in low cell density and oligotrophic environ-
ments among phylogenetically related microbes, as well 
as their potential ecological role as carriers of public 
goods including a cofactor. Further research is essential 
to deepen our understanding of these interactions and 
their ecological and evolutionary implications.
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