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The pragmatic species concept for Bacteria and Archaea is ultimately based on DNA-DNA 
hybridization (DDH). While enabling the taxonomist, in principle, to obtain an estimate of 
the overall similarity between the genomes of two strains, this technique is tedious and error-
prone and cannot be used to incrementally build up a comparative database. Recent tech-
nological progress in the area of genome sequencing calls for bioinformatics methods to re-
place the wet-lab DDH by in-silico genome-to-genome comparison. Here we investigate 
state-of-the-art methods for inferring whole-genome distances in their ability to mimic DDH. 
Algorithms to efficiently determine high-scoring segment pairs or maximally unique matches 
perform well as a basis of inferring intergenomic distances. The examined distance functions, 
which are able to cope with heavily reduced genomes and repetitive sequence regions, out-
perform previously described ones regarding the correlation with and error ratios in emulat-
ing DDH. Simulation of incompletely sequenced genomes indicates that some distance for-
mulas are very robust against missing fractions of genomic information. Digitally derived ge-
nome-to-genome distances show a better correlation with 16S rRNA gene sequence distances 
than DDH values. The future perspectives of genome-informed taxonomy are discussed, and 
the investigated methods are made available as a web service for genome-based species de-
lineation. 

 

Introduction 
Macroscopic organisms, such as animals, plants 
and fungi, are generally easy to distinguish for 
species classification by an abundance of morpho-
logical differences, behavioral traits, or by inter-
breeding barriers. For microorganisms belonging 
to the two ‘prokaryotic’ domains of life,  Archaea 
and Bacteria [1], species delineation is a much 
more challenging task. Morphological features and 
metabolic peculiarities can be used to classify mi-
croorganisms to a certain degree of confidence, 
but the number of features and peculiarities that 
can easily be recognized for differentiation is ra-
ther limited. Consideration of genetic – and nowa-
days increasingly genomic – features often enables 

a deeper resolution for the differentiation, placing 
DNA-DNA hybridizations (DDH) in a key position 
as a major tool in microbial species delineation [2-
4]. Starting in the early 1970s [5-7], several me-
thods to determine DDH values have been devel-
oped [8]. The general principle of DNA-DNA re-
association requires (i) shearing the gDNA of the 
assayed organism and the gDNA of the reference 
organism(s) (type strain(s)) into small fragments 
of 600-800 bp; (ii) heating the mixture of DNA 
fragments from both strains to dissociate the DNA 
double-strands; and (iii) subsequently decreasing 
the temperature until the fragments reanneal. For 
the reason that the melting temperature of a 
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double-strand depends on the degree of match-
ing base pairings between both strands, genomic 
(dis-)similarity can be inferred from the melting 
temperature. The hybrid DDH value is usually 
specified relative to the DDH value obtained by 
hybridizing a reference genome with itself. DDH 
values ≤70% are considered as an indication that 
the tested organism belongs to a different species 
than the type strain(s) used as reference(s) [2,4]. 
All established variations of DDH determination 
are technically demanding, labor-intensive and 
time-consuming procedures, therefore DDH de-
termination is now performed by only a few spe-
cialized laboratories, and microbial taxonomists 
apply DDH only in cases where the strains to be 
differentiated have previously been shown to be 
closely related in terms of their 16S rRNA gene 
sequences [3,4]. In practice, the distinct DDH de-
termination methods are all based on the same 
principle, but frequently lead to different results 
[8,9]. Accordingly, there is increasing interest to 
replace DDH with more reproducible and absolute 
methods that do not require the repeated use of 
reference strains over and over again. Enabled by 
the automation of Sanger sequencing (in the 
1990s) and the now dominating pyrosequencing 
methods [10], the rapid technical progress in se-
quencing technology lets us envision that genome 
sequencing will very soon become a routine ana-
lytical method for microbial species delineation. 
This situation resembles events in the mid 1980s 
when the traditional DNA:rRNA hybridization [11] 
was first technically improved [12] but then rapid-
ly and completely replaced by the use of 16S rRNA 
sequences [1], which could be stored in databases 
that (apart from resequencing to resolve artifacts 
and 16S rRNA heterogeneity) require only one 
experiment (sequence) per type strain to fix it for-
ever in a rapidly growing and seemingly unlimited 
database [13]. The availability of whole genome 
sequences has dramatically changed the way mi-
crobiologists formulate and answer questions 
about subjects of interest, often termed the'-omics 
revolution' [14]; the time has now arrived to use 
genome sequences in the daily routine of microbi-
al taxonomists for the purpose of species delinea-
tion. 
Some in silico methods based on the comparison 
of completely sequenced genomes have already 
been suggested as an alternative to DDH [15,16]. 
Goris et al. [17] applied BLAST [18] to determine 
high-scoring segment pairs (HSPs) between ge-

nome sequences after cutting them into small 
1000 bp-long pieces to emulate the DDH proce-
dure (see above). The 'Average Nucleotide Identi-
ty' (ANI) and the 'Percentage Conserved DNA' 
were then calculated from the sets of HSPs. The 
method was implemented in a Perl script that 
could be obtained from its authors on request. Re-
gression analyses of the data suggested that the 
resulting in-silico genomic similarity measures 
were in good agreement with DDH values deter-
mined for the same pairs of strains in the wet lab 
[17]. 
Here we try to expand this sequence-based ap-
proach. A variety of similarity search methods 
have been established in addition to BLAST for the 
analysis of HSPs [19,20], along with a number of 
algorithms to calculate genome-to-genome dis-
tances (GGD) that can be used to infer phylogenies 
[21-25]. What remains to be established is wheth-
er these methods/algorithms could turn out to be 
more suitable to mimic DDH in silico. For instance, 
experience has been gained on how to adapt GGD 
approaches such as genome BLAST distance phy-
logenies (GBDP) to conditions such as large num-
bers of genomic repeats and heavily reduced ge-
nomes [21,24]. GGD methods have already been 
shown to be rather valuable tools in reconstruct-
ing whole-genome based trees of Archaea and 
Bacteria [25]. Therefore it would be very interest-
ing to see if the same methods could also be used 
to estimate species boundaries, much like the 16S 
rRNA gene sequences are used for both inferring 
phylogenies and calculating pairwise dissimilari-
ties between strains, in order to assess whether 
they need to be subjected to DDH for drawing 
conclusions about their species status [4]. 
In the present study, we compare the major state-
of-the-art programs for determining high-scoring 
segment pairs (HSPs) and maximally unique 
matches (MUMs) [20], as well as previously de-
scribed approaches for calculating GGD from such 
sets of HSPs or MUMs, regarding their perfor-
mance in an in-silico framework to replace DDH in 
comparison to ANI [17]. We also aim at enlarging 
the empirical set of data and at improving the sta-
tistics used for assessing the performance of such 
methods. As a further important selection crite-
rion for GGD approaches, we also examine their 
relative computational running times and memory 
requirements. Correlation between 16S rRNA and 
DDH data is of practical interest because 16S se-
quencing is a less tedious and error-prone task 
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than DDH, and sufficiently high 16S distances can 
predict DDH similarities below 70%  [26]. Moreo-
ver, while 16S rRNA gene sequences are them-
selves limited in estimating evolutionary distances 
(after all they represent only about 0.1% of the 
coding part of microbial genomes), it can never-
theless be used according to the ceteris paribus 
principle to assess the precision of either GGD or 
DDH. We thus were interested in the correlation of 
either method with 16S rRNA distances. Finally, 
we investigate the performance of GGD on artifi-
cially incomplete genomes. This is of considerable 
practical relevance, because gap closure in draft 
genome sequences is a very time-consuming 
process involving primer walking to create finish-
ing reads, as well as frequent rounds of re-
assemblies [27,28]. Therefore, it is of interest to 
elaborate which minimal fraction of a genome se-
quence might be required for a reliable estimation 
of GGD. 
This work is the basis for an accompanying stan-
dard operating procedure for conducting HSP- or 
MUM-based genomic comparisons [29] and for a 
web service that implements this procedure 
(http://ggdc.gbdp.org/). 

Material and Methods 
Empirical data 
The first part of the dataset used in the empirical 
tests, i.e. pairs of completely sequenced genomes 
and corresponding DDH values, is the one used in 
[17], which comprises distinct 'hybridization 
groups', i.e. sets of strains from one or few genera 
that have been compared to each other. Additional 
data were obtained by (i) determining a set of 
type strains for which whole genomes are availa-
ble. This was done by reconciling the Genomes On 
Line Database [30] and the DSMZ database 
(http://www.dsmz.de/microorganisms/); and by (ii) 
screening the International Journal of Systematic and 
Evolutionary Microbiology (http://ijs.sgmjournals.org/) 
for articles containing DDH values of these strains. 
Consequently, because the size of the dataset 
could be increased by 50%, the final list of ge-
nomes and DDH values comprised 93 ge-
nome/DDH pairs. Some of the additional genomes 
were not completely sequenced at the time of 
downloading but comprised distinct contigs from 
shotgun sequencing. These details are included in 
the full genomes list contained in the Electronic 
Supplementary Material (ESM). Unfortunately, 
DDH information is usually only available for type 

strains, whose genomes comprise only a minor 
proportion of the currently available fully se-
quenced microbial genomes [31,32]. 

Determining HSPs and MUMs 
The software packages used for determining HSPs 
were NCBI-BLAST version 2.2.18, WU-BLAST ver-
sion 2.0MP-WashU (04-May-2006) [18], BLAT 
version 34 [19] and BLASTZ version 7 [33]; MUMs 
were determined with MUMmer version 3.0 [20]. 
In the case of BLASTZ, we additionally investi-
gated alternative settings of the “K” parameter 
(2000, 2500, 3000, 3500); this parameter deter-
mines the minimum raw score required for a HSP 
for further consideration. In the case of BLAT, we 
used either 0%, 50%, or 90% (default) as mini-
mum sequence identity required within HSPs and 
0 (for 0%) or 30 (for 50% and 90% minimum 
identity) as corresponding minimum scores. Lo-
wering these values was expected to provide more 
accurate results. For the most sensitive setting, we 
additionally lowered the tile size from 12 (default) 
to 8; the tile size approximately behaves like the 
word length parameter of the BLAST programs. 
Regarding the settings of MUMmer, we applied 
minimum match lengths ranging between 16 and 
50 and the three possible settings for the treat-
ment of matches in both forward and reverse 
strand (command-line switches -mum, -
mumreference and -maxmatch). The modified 
command-line switches are also shown in Table 1. 
In either case, the resulting data were stored in 
CGVIZ format [34] for further proceeding with 
GBDP as described below. For MUMmer, we used 
the MUM length as a replacement for the HSP 
score, which is, of course, not available from that 
program. 

Distance calculation 
Pairwise distances between genomes were calcu-
lated with GBDP. All programs determining HSPs 
were run with or without HSP filtering, i.e. remov-
ing all HSPs with an e-value larger than 10-2 prior 
to calculating distances. The next step is to re-
move overlapping parts of HSPs in either genome 
using the so-called greedy-with-trimming algo-
rithm [24]. This procedure proved to be valuable 
in phylogenetic inference from genomes with 
large numbers of repeats, but trimming may also 
be omitted (the resulting distance formula being 
called 'coverage distance') [24]. Finally, distances 
are calculated from the sets of (remaining) HSPs 
using one of several approaches. 

http://standardsingenomics.org/�
http://ggdc.gbdp.org/�
http://www.dsmz.de/microorganisms/�
http://ijs.sgmjournals.org/�


Digital DNA-DNA hybridization 

120 Standards in Genomic Sciences 

Let Hxy denote the total length of all HSPs and Ixy 
denote the sum of the number of identical base 
pairs over all HSPs found by BLASTing genome x 
against genome y, whereas Hyx and Iyx are obtained 
by using y as the query and x as the subject se-
quence. GGD can then be defined as follows 
[21,24,35]: 

Here λ(x,y) is a function of the lengths of the two 
genomes; in the simplest case, lambda is equal to 
the sum of the genome lengths.  
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Other distance functions can be derived from the 
previously mentioned ones by applying a loga-
rithmic transformation or by using twice the 
length of the shorter genome instead of the sum of 
the genome lengths, resulting in a total number of 
ten distance functions to be tested. (The internally 
applied numbering of the GBDP software is: 0-3: 
formula (1); 4-5: formula (2); 6-9: formula (3); 0, 
2, 6, 8: sum of genome lengths in denominator; 1, 
3, 7, 9: twice the minimum genome length in de-
nominator; 0, 1, 4, 6, 7: no logarithm; 2, 3, 5, 8, 9: 
logarithm. Further details are provided in the 
ESM.) Using the minimum genome length im-
proved phylogenetic accuracy if heavily reduced 
genomes were considered [21,24]; logarithmic 
transformation of the data was also useful in such 
cases, but had no effect on the non-parametric 
correlation analyses in the present study (see be-
low; one of the advantages of our approach). Note 
that we here examine methods based on the com-
parisons of the underlying nucleotide sequence 
only; while distance approaches using the trans-
lated amino acids may perform better in phyloge-
netic inference of deep nodes [21], DDH is con-
cerned with closely related organisms only, and 
mimicking it in silico based on direct genome se-
quence comparisons is straightforward. 

Quantifying method performance 
Goris et al [17] used linear regression to deter-
mine the suitability of their ANI algorithm to mim-
ic DDH values. This regression procedure has two 
disadvantages. First, it presupposes a linear rela-
tionship between DDH values and genome dis-
tances, which may or may not hold for current 

GGD approaches. For instance, some GGD formu-
las result in distances more rapidly saturated than 
others, that is, distances that do not show signifi-
cant additional increase in spite of further increas-
ing genomic differences [21,24]. This problem can 
be overcome by replacing regression with correla-
tion and Pearson's with Kendall's non-parametric 
correlation coefficient [36,37] which uses the val-
ues' ranks only (in the following, Pearson's coeffi-
cients are included for selected values for compar-
ison; full results for either coefficient are available 
in the ESM). Moreover, non-parametric statistics 
are more robust against outliers. In contrast to 
Goris et al. [17], we calculate distance functions; 
that is, a correlation of -1.0 is optimal. As in the 
following, all correlations, as well as all plots (see 
below), were computed with the R package [38]. 
Secondly, many users will only be interested in the 
error ratio of the whole-genome distance regard-
ing the question whether the DDH value is lower 
than 70%. This problem can be solved by applying 
a two-step procedure: (i) determining, for each 
GGD approach, the distance threshold T resulting 
in the smallest error ratio, and (ii) reporting this 
optimal error ratio. Here, error ratio is defined as 
the sum of the number of false positives (distances 
at most as large as T corresponding to DDH values 
lower than 70%) and false negatives (distances 
larger than T corresponding to DDH values at least 
as large as 70%) divided by the total number of 
pairwise distances. The optimal T can then be 
used in real genome comparisons for replacing the 
DDH approach, too. We estimated the optimal T by 
assessing all values between the maximum and 
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the minimum for each GGD variant, applying a 
step width of 1/1000 of the range. 
To compare the results obtained with GBDP to 
those obtained with the ANI and 'Percentage Con-
served DNA' methods as reported by Goris et al. 
[17], we reduced the dataset to the genome pairs 
examined in the latter study. We could not apply 
ANI to the full dataset, because when applying the 
ANI Perl script of Konstantinidis to the genome 
pairs analyzed in the latter study, we could not 
adequately corroborate the results reported in 
[17]. For the sake of convenience we used the re-
sults for the 62 genome pairs analyzed with ANI 
directly as published in [17] to compare the per-
formance of ANI with the GGD methods assessed 
in the present study. Deloger et al [16] apparently 
reimplemented the ANI method but did not dis-
close whether they obtained the same results as in 
[17] when applied to the same strains. 
In order to correlate GGD and DDH with pairwise 
distances inferred from the 16S rRNA, this gene 
was extracted from all completed and annotated 
genomes under study, resulting in a set of 59 pairs 
of genomes. The 16S rRNA gene sequences were 
aligned with Poa v2 in progressive alignment 
mode [39], and uncorrected (“p”) distances were 
calculated from the aligned sequences using 
PAUP* v4b10 [40] under the MISSDIST=IGNORE 
setting. Correlations were calculated as described 
above. 

Run-time and memory consumption measurements 
Computation time of the programs determining 
HSPs or MUMs as well as of GBDP applied to these 
data was measured using a reduced dataset com-
prising a selection of eight Genomes of the Esche-
richia/Shigella group. Plasmids were removed 
from the dataset, only chromosomal data was 
used. On the one hand, this allowed us to compare 
job running times, since all FASTA files had ap-
proximately the same size (5 Mbp). On the other 
hand, using closely related strains leads to the de-
tection of a considerable amount of HSPs by the 
different local alignment search tools, thus allow-
ing estimates of an upper bound for the search 
time. These measurements were performed on a 
AMD Quad-Core Opteron System equipped with a 
2.3 GHz CPU and 20 GB RAM. 

Simulation of incomplete genome sequencing 
In order to measure method performance on in-
completely sequenced genomes, artificial gaps 

were incorporated into the fully sequenced ge-
nomes of the empirical datasets (that is, 62 pairs 
of complete genomes formed the basis of our si-
mulation). This was based on the well-known 
Lander-Waterman formula [41], which is usually 
applied to estimate the sequencing effort neces-
sary to obtain a given coverage, as follows. Based 
on a realistic value of 700 bp as the fixed read 
length (http://www.jgi.doe.gov/sequencing/stat-
istics.html), the real length of the fully sequenced 
chromosome or plasmid, and the proportion of the 
genome to be retained, the number of reads ne-
cessary to achieve this proportion is calculated 
using the Lander-Waterman approach [41]. An 
array of all positions in the original genome is 
created, and all positions are marked as 'not se-
quenced'. A starting position in the genome for 
each of the calculated number of reads is then 
drawn at random, and this one as well as the cor-
responding 699 downstream array positions are 
marked as 'sequenced'. After all reads have been 
considered, positions remaining in 'not se-
quenced' state are then removed from the input 
genome, creating disjoint contigs, which are out-
put. Applied several times, this procedure creates 
modifications of input genomes whose lengths are 
dispersed around an expected value equal to the 
original genome length times the input sequencing 
proportion. 
Based on this algorithm, a total number of 100 
simulation runs was conducted for sequencing 
proportions of 0.99, 0.95, 0.90, 0.85, 0.80, 0.75, 
0.70, 0.60, 0.50, 0.40, 0.30, 0.20, and 0.10. Note 
that this approach corresponds to simulating ge-
nomes that are incompletely sequenced, but are 
nevertheless lacking sequencing errors in all reads 
and are correctly assembled. A simulation includ-
ing an assembly of artificially created reads in 
each replicate has been rejected for reasons of 
running time. On account of this, only a single, 
reasonably fast and well-performing HSP deter-
mination approach was examined in simulation. 
Method performance on incomplete genomes was 
quantified in two ways: First, error ratios were 
determined after applying the optimal threshold 
as determined for the corresponding distance 
function and complete genomes (see above). 
Second, Euclidean distances between the GGD cal-
culated from the original genomes and the GGD 
inferred from the respective incomplete genomes 
were calculated using the Eukdis program [42]. 

http://standardsingenomics.org/�
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Results 
Correlation of GGD algorithms with and 
prediction of DDH values 
Results from non-parametric correlation of DDH 
values with distances based on HSP determination 
programs are shown in Figure 1. The best per-
forming software was BLAT, followed by NCBI-
BLASTN; BLASTZ and particularly WU-BLASTN 
performed less well. The globally best Kendall 
correlation obtained was -0.763 from the combi-
nation of BLAT under default values with or with-
out HSP filtering ('blat' and 'blatNF' in Fig. 1), 
trimming and either formula (3) or its logarithmic 
modification. The overall performance of BLAT 
could not be increased further by setting the min-
imum sequence identity required within HSPs and 
the corresponding minimum scores to their mi-
nimal possible value ('blatmin' and 'blatminNF'); 
combined with this setting, also formula (3) and 

its logarithmic modification performed best, also 
achieving a correlation of -0.763. In contrast, re-
questing a minimum within-HSP identity of 90% 
('blatid90'/'blatid90NF', best correlation -0.760) 
and particularly setting the tile size to its mini-
mum value of 8 ('blatminTS'/'blatidminTSNF', 
best correlation -0.699) decreased the perfor-
mance. NCBI-BLASTN optimally achieved a corre-
lation of -0.757 (same distance functions, filter-
ing), WU-BLASTN one of -0.695 (same distance 
functions, no filtering), BLASTZ one of -0.658 (K 
set to 3500, no filtering, distance formula (2)). In 
either case, trimming outperformed coverage-
based distances. Regarding Pearson's r, BLAT 
showed the most pronounced correlation of -
0.954 (when combined with 90% minimum iden-
tity within HSPs, trimming and formula (3)), fol-
lowed by NCBI-BLASTN (-0.925; no filtering, 
trimming, formula (3)). 

 

 
Figure 1. Non-parametric correlations of DDH values with distances based on HSP determination. 
Each boxplot comprises Kendall's correlation coefficients calculated for all GBDP distance formulas 
and the selected program for HSP determination. Note that lower values indicate better DDH predic-
tion. For abbreviations of the method-parameter combinations, see Table 1; 'NF' was added if HSP fil-
tering was not applied. 
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In terms of the error ratio (Figure 2), a combina-
tion with at least one GBDP distance function that 
resulted in the globally lowest value of 0.043 was 
present for all programs except BLASTZ (lowest 
ratio 0.054). However, median error ratios over all 
distance functions largely mirrored the relation-
ships between the correlations. The settings re-
sulting in the best correlation for each program 

also resulted in minimal error ratios, but not nec-
essarily with the same distance functions. In con-
trast, here formula (2) and its logarithmic modifi-
cation were optimal for all HSP determination 
programs. The best GGD threshold was 0.044 and 
0.045, respectively, for NCBI-BLASTN without fil-
tering, and 0.042 and 0.043, respectively, for the 
best BLAT-based variant. 

 

 
Figure 2. Error ratios of distances based on HSP determination in predicting whether DDH values are 
at least as large as 70% or lower. Each boxplot comprises error ratios calculated for all GBDP distance 
formulas and the selected program for HSP determination. For abbreviations of the method-parameter 
combinations, see Table 1; 'NF' was added if HSP filtering was not applied. 

 
Results from non-parametric correlation of DDH 
values with distances based on MUMmer are 
shown in Figure 3. The best Kendall correlation 
value of -0.749 was obtained with a minimum 
MUM length of 44 bp in combination with -mum, 
the GBDP variant coverage instead of trimming, 
and formula (1) and its logarithmic modification. 
The best Pearson correlation with DDH (-0.935) 
was obtained with the same settings but -
maxmatch instead of -mum. In contrast, the mi-
nimal error ratio of again 0.043 was obtained by 

all methods for sufficiently large minimum MUM 
lengths (Figure 4). 
Scatterplots of DDH and HSP-based and MUM-
based GGD (under the best settings for each) are 
shown in Figure 5 and Figure 6; relevant DDH and 
GGD thresholds are indicated. 

Comparison of GGD with ANI and 
16S rRNA 
In the reduced dataset of 62 genome pairs for 
which ANI and 'Percentage Conserved DNA' val-
ues were available [17], NCBI-BLASTN combined 

http://standardsingenomics.org/�
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with greedy-with-trimming, no filtering and for-
mula (3) or its logarithmic version as distance 
functions performed best and achieved a non-
parametric (Kendall) correlation of -0.771. The 
best BLAT-based method (correlation: -0.760) 
was also the same as above for the full dataset. In 
contrast, correlation of DDH with ANI was 0.717 
and of DDH with 'Percentage Conserved DNA' was 
0.686 (full results are provided in the ESM). Re-
garding Pearson's correlation coefficients, relative 
performance of ANI (0.974) and 'Percentage Con-
served DNA' (0.977) was higher; they were out-
performed by BLAT combined with greedy-with-
trimming and formula (3) only (0.979; for details 
see ESM). Note that ANI and 'Percentage Con-
served DNA' are similarity methods and, hence, 
the sign of the correlations must be inverted to 
compare them with GGD. The respective minimal 
error ratios: ANI, 0.065; 'Percentage Conserved 
DNA', 0.081; NCBI-BLASTN, 0.065; BLAT, 0.065. 
Thus, the best GGD approaches analyzed in the 
present study slightly outperform the previously 

described methods [17] if applied to the same da-
taset. 
The combination of BLAT, formula (1), trimming 
and 90% minimum identity within HSPs showed 
the highest correlation (0.612 as Kendall coeffi-
cient) with 16S rRNA distances; for WU-BLASTN, a 
maximum of 0.535 (settings were: formula (3), 
trimming and no filtering), for NCBI-BLASTN, 
0.602 (formula (1), trimming, no filtering), for 
BLASTZ, 0.503 (formula (1), K set to 3500, no 
trimming, no filtering), and for MUMmer, 0.611 (-
mumreference, 44 as minimum MUM length), was 
achieved. In terms of the Pearson coefficient, 
BLAT also performed best (0.896; formula (1) 
with or without trimming and filtering). Interes-
tingly, DDH displayed a much less pronounced 
correlation with 16S rRNA distances than the GGD 
approaches closest to the 16S (Kendall's tau: -
0.533; Pearson's r: -0.745; note that the sign is 
reversed because distances and similarities were 
correlated). 

 
 

 
Figure 3. Non-parametric correlations of DDH values with distances based on MUMmer. Each boxplot 
comprises Kendall's correlation coefficients calculated for all GBDP distance formulas, the greedy-with-
trimming algorithm and the selected MUMmer parameter combination. Note that lower values indicate 
better DDH prediction. The x-axis comprises the three investigated series of minimum MUM lengths 
ranging between 16 and 50, one series per setting for the treatment of matches in both forward and re-
verse strand, abbreviated max, mum and ref, respectively. For the meaning of these abbreviations, see 
Table 1. 
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Figure 4. Error ratios of distances based on MUMmer in predicting whether DDH values are at 
least as large as 70% or lower. Each boxplot comprises error ratios calculated for all GBDP dis-
tance formulas and the selected MUMmer parameter combination. The x-axis comprises the 
three investigated series of minimum MUM lengths ranging between 16 and 50, one series per 
setting for the treatment of matches in both forward and reverse strand, abbreviated max, mum 
and ref, respectively. For the meaning of these abbreviations, see Table 1. 

 
Figure 5. Scatterplot of DDH (x-axis) and GGD inferred with BLAT under default values without 
HSP filtering, greedy-with-trimming and formula (3). The vertical line indicates the 70% DDH 
threshold, the horizontal line indicates the GGD threshold that results in the lowest error ratio 
for these settings. The result of a robust-line fit using the R function line() is also shown, indicat-
ing that regression and determination of a threshold with lowest error ratio may differ in their 
estimates of a GGD threshold to replace the DDH 70% cutoff.  
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In the further reduced dataset (55 genome pairs) 
comprising the genome pairs for which ANI val-
ues were also available, MUMmer (0.616; -
maxmatch, 44 as minimum MUM length) dis-
played the highest correlation with 16S dis-
tances, as well as BLAT and NCBI-BLASTN (0.616, 
settings as in the last paragraph). ANI and 

'Percentage conserved DNA' obtained a slightly 
more pronounced Kendall coefficient of -0.618 
and -0.621, respectively. In terms of Pearson's r, 
BLAT performed best (0.899; formula (1), trim-
ming, 90% minimum identity within (-0.742) 
correlated less well. DDH performed approx-
imately as above (-0.561/-0.774). 

 

 
Figure 6. Scatterplot of DDH (x-axis) and GGD inferred with MUMmer using a minimal MUM length 
of 44 bp, no trimming and formula (1). The vertical line indicates the 70% DDH threshold, the hori-
zontal line indicates the GGD threshold that results in the lowest error ratio. For the robust-line fit, 
see caption of Figure 5. The plot shows that MUMmer-based GGD more rapidly reaches saturation 
than HSP-based GGD and that it is not linearly related to DDH, underlining the need to rely on rank-
based correlation coefficients for an unbiased comparison of distance functions. 

 

Running time and memory consumption 
The computation times of the distinct programs if 
applied to selected genome pairs are shown in Ta-
ble 1. MUMmer performs best regarding its needs 
for both time and space; the parameters regulat-
ing minimum match length and treatment of 
matches in the two strands have negligible impact. 
However, the fastest HSP determining software, 
NCBI-BLASTN, is only about half the speed as 
MUMmer, even though the BLAST algorithm is 
considerably more complex. BLASTZ again is ap-
proximately half the speed than NCBI-BLASTN, 
followed by BLAT. While the performance of 
BLASTZ is hardly affected by modifying the set-
tings, BLAT memory consumptions dramatically 

increases with lower tile size. By far the worst 
performing program regarding both time and 
space is WU-BLASTN. 
CPU time and memory consumption during the 
distance calculation with GBDP generally benefits 
from using the simpler coverage functions. This 
effect is particularly prominent in the case of 
MUMmer, most likely because the MUMs created 
by this program are more numerous and shorter 
than the HSP output created by applying other 
similarity search software to the same genome 
sequences. Storing large sets of MUMs also con-
sumes more memory. (However, it has to be con-
sidered that the “real” memory usage is hard to 
determine due to the fact that the current imple-
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mentation of GBDP is based on Java. Since the Java 
virtual machine uses a garbage collector, the ac-
tual amount of consumed memory depends on the 
selection of the maximum heap size, which depicts 

a trade-off between run-time and memory con-
sumption. The test was performed using a maxi-
mum heap size of 8 GB to optimize run-time per-
formance.) 

Table 1. Parameters, computation times and memory consumption of programs applied to selected genome pairs. 

Program Parameters (and 
abbreviation) 

Running time (user  
and system) in seconds 

Memory consumption 
in Mb 

HSP/MUM determination    
NCBI-BLASTN (ncbiblastn) 25.79 165.92 

WU-BLASTN (wublastn) 896.79 904.69 

BLASTZ K=2000 (blastz2000) 48.11 125.73 

 K=2500 (blastz2500) 47.80 124.39 

 K=3000 (blastz3000) 47.64 123.19 

 K=3500 (blastz3500) 47.61 122.45 

BLAT -minScore=0 – 
minIdentity=0 – 
tileSize=8 (blatminTS) 

2,134.54 2443.43 

 -minScore=0 – 
minIdentity=0 (blatmin) 

178.15 174.78 

 -minScore=30 – 
minIdentity=50 (BLAT) 

177.05 167.41 

 -minScore=30 – 
minIdentity=90  
(blatid90) 

177.08 167.41 

MUMmer -l 20 -mum (mum20) 13.74 94.84 

 -l 30 -mum (mum30) 13.76 94.52 

 -l 40 -mum (mum40) 13.77 94.31 

 -l 50 -mum (mum50) 13.72 94.17 

 -l 20 -mumreference 
(ref20) 

13.80 93.44 

 -l 30 -mumreference 
(ref30) 

13.81 93.44 

 -l 40 -mumreference 
(ref40) 

13.79 93.44 

 -l 50 -mumreference 
(ref50) 

13.75 93.44 

 -l 20 -maxmatch (max20) 14.07 93.44 

 -l 30 -maxmatch (max30) 13.95 93.44 

 -l 40 -maxmatch (max40) 13.86 93.44 
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Table 1 (cont.) Parameters, computation times and memory consumption of programs applied to selected genome pairs. 

Program Parameters (and 
abbreviation) 

Running time (user  
and system) in seconds 

Memory consumption 
in Mb 

 -l 50 -maxmatch (max50) 13.88 93.44 

Distance calculation 
with GBDP 
(all formulas in each case) 

   

tr F-2 mean, all programs 6,169.98 1836.62 

cov F-2  22.22 424.68 

tr NF  6,178.77 1853.68 

cov NF  22.51 404.98 

tr F-2 mean, all programs 
 except MUMmer 

39.54 415.04 

cov F-2  12.18 229.58 

tr NF  111.19 506.07 

cov NF  19.78 235.64 

tr F-2 mean, NCBI-BLASTN 
 only 

155.83 732.63 

cov F-2  34.89 465.39 

tr NF  206.68 942.36 

cov NF  43.13 473.68 

tr F-2 mean, MUMmer only 11,278.68 3021.26 

cov F-2  30.60 587.26 

tr NF  11,235.07 2976.68 

cov NF  24.78 546.09 

    

Performance of HSP/MUM determination programs under distinct settings (parameters are given if deviating from 
the default) and the subsequent distance calculation with GBDP. Abbreviations: cov, coverage distances; tr, gree-
dy-with-trimming distances; F-2, filtering using an e-value threshold of 10-2; NF, no filtering. 

Algorithm performance on incomplete genomes
The error ratios in predicting a DDH value ≤70% 
or >70% if applied to genomes artificially made 
incomplete is shown in Figure 7 for NCBI-BLASTN 
without filtering and all ten GBDP distance func-
tions. While the median error ratio over all func-
tions and simulation replicates approaches more 
than 40% for 25% genome deletion, the error ra-
tio of formula (2) and its logarithmic modification 
remains stable at 0.062 irrespective of the deleted 
genome proportion until 80% deletion (note that 
the simulation was based on a reduced dataset of 
65 pairs of completely sequenced genomes). Simi-

larly, Euclidean dissimilarities between the GGD 
derived from the original genomes and those in-
ferred from the incomplete ones increase nearly 
linearly with increasing deletion proportion, but 
formula (2) remains visible at dissimilarities be-
tween 0.0005 and 0.0284 for 1% to 80% genome 
deletion (Figure 8). 

Discussion 
Best GGD algorithms for mimicking DDH 
As expected, in our experiments, the error ratio of 
the prediction of DDH values smaller/larger than 
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the 70% threshold by GGD had less discriminating 
power than calculating correlations between DDH 
and GGD. However, because those programs and 
settings that were optimal with Kendall's tau were 
also optimal regarding the error ratio, correlation 
can well be used to select the best programs and 
parameters. The situation is more complicated 

regarding the optimal GBDP distance function, 
which is not necessarily the same regarding corre-
lation and error ratio. Therefore, a prediction of 
whether a DDH value would be at least as large as 
70% can be based on the GGD thresholds resulting 
in the lowest error ratios. 

 

 
Figure 7. Boxplots showing the error ratios in predicting a DDH value 70% or >70% if applied to genomes 
artificially made incomplete. GGD were calculated using NCBI-BLASTN without filtering and all ten GBDP 
distance functions. The x-axis indicates the combination of the retained proportion of the genome (in per-
cent) and the distance formula; F1, F2 and F3 refer to formulas (1), (2) and (3) as described above. 

Interestingly, the more sensitive programs or set-
tings are not necessarily those with the highest 
correlation. For instance, MUMmer performs best 
with moderate minimum match lengths (Figure 
3). Likewise, BLAT shows a higher correlation 
with the default tile size of 11 bp than with the 
supposedly more sensitive 8 bp. Moreover, WU-
BLASTN, which usually results in larger sets of 
HSPs, including much shorter HSPs (personal ob-
servation), is outperformed by NCBI-BLASTN, and 
works better when filtering is applied (Figure 1). 
These results may be caused by the loss of infor-
mation inherent to the DDH approach itself, which 
would explain why a corresponding loss of infor-
mation caused by less sensitive settings for GGD 
calculation causes an increase in the correlation. 
The conclusion that DDH is imprecise is confirmed 

by the comparison with the 16S rRNA data – oth-
erwise it would be hard to explain why GGD (and 
ANI) show a significantly higher correlation with 
16S rRNA distances than does DDH. Accordingly, 
there may be inherent difficulties in obtaining a 
perfect correspondence between GGD and DDH 
because of the imprecision of the latter [8,9]. Thus, 
the high correlations and the minimal obtained 
error ratio of about 4% are already rather promising. 
Running time and memory consumption of the 
distance calculation should not be overlooked as a 
selection criterion for GGD approaches. However, 
the best performing programs and/or settings, 
particularly NCBI-BLASTN and MUMmer, are also 
comparatively fast and need a feasible amount of 
RAM only (Table 1). The current GBDP implemen-
tation also seems to work well, even though in the 
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current implementation all distance functions are 
exported at once, irrespective of whether they are 
processed further. A significant exception is both 
time and space consumption in the case of MUM-
mer combined with greedy-with-trimming, most 
likely because of the very large number of MUMs 
to cross-compare. However, because MUMmer has 
a built-in mechanism for avoiding non-unique 
matches, and, hence, a built-in ability to deal with 
repetitive sequences, greedy-with-trimming is 

unnecessary in that case and can safely be re-
placed by the much faster coverage distance (Fig-
ure 3, Figure 4; Table 1). Running time differences 
are less prominent for the HSP determining pro-
grams (Table 1); this, in addition to the likely ben-
efit from greedy-with-trimming in the case of re-
petitive sequences [21,24], indicates that the lat-
ter algorithm should be used for BLASTN, BLAT 
and BLASTZ.  

 

 
Figure 8. Boxplots showing the Euclidean distances between the original GGD inferred 
from complete genomes and those inferred from genomes artificially made incomplete. 
GGD were calculated using NCBI-BLASTN without filtering and all ten GBDP distance 
functions. The x-axis indicates the combination of the retained proportion of the ge-
nome (in percent) and the distance formula; F1, F2 and F3 refer to formulas (1), (2) and 
(3) as described above. 

 
MUMmer also differs in another aspect from the 
HSP determining programs since distance formula 
(1) was optimal. However, this is hardly surpris-
ing because MUMs comprise exactly identical se-
quences only and, hence, the difference between 
formulas (1) and (3) might only be caused by mi-
nor numerical differences. In contrast, only formu-
la (3) was optimal for the best-performing HSP-
based approaches. This might have been expected 
because that formula preserves most information 
and also performed best in a phylogenetic context 
[35]. However, formula (2) achieved a lower error 
ratio at 70%, indicating that one and the same me-
thod-parameter combination does not necessarily 
perform equally well in mimicking DDH over the 

whole range of percent-wise similarities. Impor-
tantly, even though most researchers may only be 
interested in a GGD analog of the 70% threshold, 
overall high correlation cannot be dismissed be-
cause it indicates good replacement performance 
over the full range of possible thresholds. For in-
stance, in overspeciated groups with comparative-
ly little 16S rRNA divergence such as Streptomyc-
es, establishing novel species is frequently ac-
cepted even in the case of higher DDH similarity 
[43]. 
In consequence, some uncertainty remains re-
garding an overall 'best' method for replacing 
DDH by the comparison of fully sequenced ge-
nomes. In our view, this problem is caused by the 
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limited size of the empirical datasets currently 
available for testing, which, as mentioned above, is 
due to the low proportion of type strains among 
the organisms for which fully sequenced genomes 
are available [31,32]. Accordingly, only few 
'hybridization groups' [17] can be tested, even 
though DDH and GGD results may depend to some 
degree on the phylogenetic position of such 
groups of closely related organisms. This high-
lights the necessity to (i) consider distinct GGD 
functions, as, e.g., included in the GBDP frame-
work, and (ii) to provide an infrastructure that 
allows one to update the underlying empirical test 
datasets and the corresponding optimal parame-
ters for calculating DDH analogs from GGD values 
[29]. 
Nevertheless, it is already noteworthy that the 
distance calculation with GBDP, although it has 
not been designed originally as a replacement for 
DDH, works as well or even outperforms the ANI 
and the 'Percent Conservation of DNA' approaches 
described earlier [17]. At the very least, this indi-
cates that the first step applied in the latter algo-
rithms, that is, to dissect the genomes into chunks 
of 1,000 bp, is obviously unnecessary. It seems to 
be more suitable to apply more generally useful 
approaches such as GBDP [21,24] to the challenge 
of surpassing the prediction power of DDH for 
species delineation by in-silico methods. The ques-
tion remains, if such methods are also applicable 
to incompletely sequenced genomes. 

Use with incompletely sequenced genomes 
Our simulation reveals that only one family of dis-
tance functions, i.e. formula (2) in either its origi-
nal or logarithmized variant, is robust against the 
use of incomplete genomes; the error ratio of GGD 
based on formula (2) even remains constant 
throughout the investigated range of deleted pro-
portions of the genome. This result is not unex-
pected though, as formula (2) is the only one in-
dependent of genome length, and thus it is not di-
rectly affected by the removal of HSPs due to the 
removal of parts of the genome. Although Henz et 
al. [24] observed that formula (1) performed best, 
their study was concerned with inferring deep 
phylogenetic relationships. The fact that formula 
(2) is more rapidly saturated with increasing 
'true' evolutionary distance is hardly relevant for 
mimicking DDH by GGD because here the focus is 
on differentiating between closely related strains. 

A shortcoming of our simulation approach is that 
the occurrence of read assembly artifacts cannot 
be taken into account. However, the incorrect ar-
rangement of genome fragments is most likely not 
an issue for GBDP because the position of HSPs in 
the genome is not taken into account other than 
for determining overlapping HSPs and, hence, has 
no impact on the calculated distances. Further-
more, the trimming algorithm reduces the sets of 
HSPs to their non-overlapping subsequences and 
thus removes the effect of repetitive sequences 
[24], which are particularly often incorrectly as-
sembled. A more important limitation of our simu-
lation approach might be that it does not consider 
that sequence quality also decreases with decreas-
ing coverage; the reads we have simulated are er-
ror-free by definition. Accordingly, constant error 
ratios down to 80% deletion (and perhaps more) 
are most likely an overestimation of GGD perfor-
mance if applied to incomplete genomes. Howev-
er, regarding that draft genome sequences (lack-
ing gap closure) usually comprise 95-99% of the 
full genome length (in addition to the fact that 
gaps often comprise repeat regions, which are dif-
ficult to sequence and are removed by GBDP 
trimming anyway), our successful identification of 
distance functions that are robust against missing 
genome parts show great promise for future ge-
nome-based taxonomy. 

Conclusion 
Our study confirms and extends the result of a 
previous study [17] that methods are available 
which outperform DNA-DNA hybridization simi-
larities for microbiological species delineation on 
a broader data basis and for a broader range of 
methodologies. While several of the tested me-
thods for HSP or MUM determination show high 
correlations and low error ratios, the apparently 
most widely used one, NCBI-BLASTN, performs at 
least as well as the others. Furthermore, we 
showed that distance functions devised for whole-
genome phylogeny perform at least as well as me-
thods described earlier, which are currently not 
publicly available. Additionally, we demonstrated 
that one family of distance functions is robust 
against the incompleteness of genome sequencing. 
Because the range of investigated methods was 
broader than in previous studies, we were able to 
provide an accompanying standard operating pro-
cedure for conducting HSP- or MUM-based ge-
nomic comparisons and a reference implementa-
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tion available as a web service for genome-based 
species delineation [29]. 
Let alone the wealth of information of general in-
terest available in complete genomes [28], replac-
ing DDH by GGD is promising for taxonomists for 
several reasons. First and foremost, in contrast to 
DDH [3] it is possible to work incrementally, reus-
ing sequenced genomes indefinitely. Also, in addi-
tion to DDH, determination of the G+C content in 
vitro and 16S rRNA sequencing of type strains can 
also be substituted by genome sequencing, which 
would result in more precise measures than any of 
the three approaches. By inferring pathways from 

annotated genome sequences it may even be poss-
ible to confirm, if not to infer, whether compounds 
that are routinely used in chemotaxonomy are 
produced by the strain under study [44,45]. The 
steadily decreasing sequencing costs will enable 
microbiologists to routinely use complete ge-
nomes irrespective of the question of which se-
quencing method(s) will become the most popular 
[28]. The present study confirms the view that 
methods for taxonomic analysis of genomic infor-
mation are waiting in their wings and are not an 
obstacle for crossing the border into the era of 
genome-based taxonomy. 

Supplementary Material 
Electronic supplementary information has been made available through the reading tools sidebar, containing the list of 
examined genomes, the correlations and error ratios for all methods and parameters and the underlying data (genome-
to-genome distances) used to determine them.  
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Note added in proof
When preparing the revised manuscript an article by 
Richter and Rosello-Mora (PNAS 106:19126-19131) 
came to our attention, which also addresses the prob-
lem of how to replace DDH by approaches based on 
genome sequences. The latter authors provide a GUI-
driven re-implementation of ANI but no web service. 

Only a single HSP-determining program is assessed, 
which is compared to an approach based on DNA 
strings (word counts). Regarding incompletely se-
quenced genomes, the results presented in the afore-
mentioned publication are comparable to ours.  
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